Aggarwal RK, Brar DS, Nandi S, Huang N, Khush GS (1999) Phylogenetic relationships among Oryza species revealed by AFLP makers. Theor Appl Genet 98: 1320–1328. https://doi.org/10.1007/s001220051198
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Can NT, Lang NT (2007) Identification of some promising varieties for salinity soil and phosphorous deficient areas in the Mekong Delta. Omonrice 15: 179–184.
Chen WB, Nakamura I, Sato Y-I, Nakai H (1993) Distribution of deletion type in cpDNA of cultivated and wild rice. Jap J Genet 68: 597–603.
Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: Based on the interspersion pattern of SINEs. Mol Biol Evol 20: 67–75. https://doi.org/10.1093/molbev/msg004
Choi JY, Platts AE, Fuller DQ, Hsing T-I, Wing RA, Purugganan, MD (2017) The rice paradox: multiple origins but single domestication in Asian rice. Mol Biol Evol 34: 969–979. https://doi.org/10.1093/molbev/msx049
Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11–15.
Fareed A, Shindo H, Takahashi H, Nakamura I (2015) Analysis of PolA1 intron 19 and Ntag sequences reveals two ancestral lineages in the origin of the Brassica rapa complex and Chinese cabbage (B. rapa var. pekinensis). J Hort Sci Biotech 90: 273–278. https://doi.org/10.1080/14620316.2015.11513182
Fareed A, Shindo H, Takahashi H, Nakamura I (2016) Phylogeny of PolA1 Gene Consistent with the Relationships of U’s Triangle in Brassica. Hort J 85: 55–62. https://doi.org/10.2503/hortj.MI-052
Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 163: 1631–1638. https://doi.org/10.1534/genetics.104.035642
Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto, Mori, M, Kondo C, Honji Y, Sun CR, Meng BY, et al (1989) The complete sequence of rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194.
Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, et al. (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490: 497–501. https://doi.org/10.1038/nature11532
Huang X, Han B (2016) Rice domestication occurred through single origin and multiple introgressions. Nature Plants 2: 15207. http://doi.org/10.1038/nplant.2015.207
Ishii T, Hiraoka T, Kanzaki T, Akimoto M, Shishido R, Ishikawa R (2011). Evaluation of genetic variation among wild populations and local varieties of rice. Rice 4: 170–177. https://doi.org/10.1007/s12284-011-9067-x
Izawa T (2008) The process of rice domestication: A new model based on recent data. Rice 1: 127–134. https://doi.org/10.1007/s12284-008-9014-7
Jena KK, Khush GS (1990) Introgression of genes from Oryza officinalis Well ex Watt to cultivated rice, O. sativa L. Theor Appl Genet 80: 737–745.
Kanno A, Watanabe N, Nakamura I, Hirai A (1993) Variations in chloroplast DNA from rice (Oryza sativa): Differences between deletions mediated by short direct‐repeat sequences within a single species. Theor Appl Genet 86: 579–584.
Kato, S. (1930) On the affinity of the cultivated varieties of rice plant, Oryza sativa L. J Dept Agric Kyushu Univ 2: 242–276.
Kawahara Y, Bastide MDL, Hamilton JP, Kanamori H, Mccombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S et al. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6: 3–10. https://doi.org/10.1186/1939-8433-6-4
Khush GS, Virk PS (eds.) (2005). IR varieties and their Impact (p. 163). Los Banos, Philippines: International Rice Research Institute.
Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trend Genet 23: 578–587. https://doi.org/10.1016/j.tig.2007.08.012
Kovach MJ, McCouch SR (2008) Leveraging natural diversity: back through the bottleneck. Curr Opin Plant Biol 11: 193–200. https://doi.org/10.1016/j.pbi.2007.12.006
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Evol Genet Anal 33: 1870–1874. https://doi.org/10.1093/molbev/msw054
Lam DT, Buu BC, Lang NT, Toriyama K, Nakamura I, Ishikawa R (2019) Genetic diversity among perennial wild rice Oryza rufipogon Griff., in the Mekong Delta. Ecol Evol 9: 2964–2977. https://doi.org/10.1002/ece3.4978
Lang NT, and Buu BC (2011) Rice genetic resource conservation and utilization in the Mekong Delta. Omonrice 18: 22-23.
Londo JP, Chiang Y-C, Hung K-H, Chiang T-Y, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci U S A 103: 9578–9583. https://doi.org/10.1073/pnas.0603152103
Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan M D. (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci U S A 108: 8351–8356. https://doi.org/10.1073/pnas.1104686108
Morishima H, Sano Y, Oka HI (1992) Evolutionary studies in cultivated rice and its wild relatives. Oxf Surv Evol Biol 8: 135–184.
Morishima H (1994) Rice in the Mekong Delta. Y-I sato (ed.), Ecological-genetic studies on wild and cultivated rice in tropical asia (4th survey), pp 211-215.
Nakamura I, Rai B, Takahashi H, Kato K, Sato Y-I, Komatsuda T (2009) Aegilops section Sitopsis species contains the introgressive PolA1 gene with a closer relationship to that of Hordeum than Triticum–Aegilops species. Breed Sci 59: 602–610. https://doi.org/10.1270/jsbbs.59.602
Nakamura I (2010) Method of identifying eukaryotic species. JP 2010088398-A/274, 22 Apr 2010.
Oka H-I (1988) Origin of Cultivated Rice. Tokyo: Japan Scientific Societies Press.
Rai B, Takahashi H, Kato K, Sato Y-I, Nakamura I (2012) Single-copy nuclear PolA1 gene sheds light on the origin of S genome with relationships to B and G genomes of polyploid wheat species. Genet Resour Crop Evol 59: 1713–1726. https://doi.org/10.1007/s10722-012-9793-y
Russell J, Zomerdijk, Joost CBM (2006) The RNA polymerase I transcription machinery. Biochem Soc Symp 73: 203–16. https://doi.org/10.1042/bss0730203
Sang T, Ge S (2007) The puzzle of rice domestication. J Integr Plant Biol 49: 760–768. https://doi.org/10.1111/j.1744-7909.2007.00510.x
Second G (1982) Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jap J Genet 57: 25–57.
Sweeney G, McCouch SR (2007) The complex history of the domestication of rice. Ann. Bot 100: 951–957. https://doi.org/10.1093/aob/mcm128
Takahashi H, Sato Y-I, Nakamura I (2008) Evolutionary analysis of two plastid DNA sequences in cultivated and wild species of Oryza. Breed Sci 58: 225–233. https://doi.org/10.1270/jsbbs.58.225
Takahashi H, Sato T, Sato Y-I, Nakamura I (2009) Genome-type-specific variation of the 19th intron sequence within the RNA polymerase I largest subunit gene in the genus Oryza. Plant Syst Evol 282: 21–29. https://doi.org/10.1007/s00606-009-0172-x
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22: 4673–4680. https://doi.org/10.1093/nar/22.22.4673
Ueno K, Sato T, Takahashi N (1990) The indica-japonica classification of Asian rice ecotypes and Japanese lowland and upland rice (Oryza sativa L.). Euphytica 46: 161–164.
Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6: 139–146. https://doi.org/10.1016/S1369-5266(03)00009-8
Vaughan DA, Lu B-R, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174: 394–408. https://doi.org/10.1016/j.plantsci.2008.01.016
Yamanaka S, Nakamura I, Nakai H, Sato Y-I (2003) Dual origin of the cultivated rice based on molecular markers of newly collected annual and perennial strains of wild rice species, Oryza nivara and O. rufipogon. Genet Resour Crop Evol 50: 529–538. https://doi.org/10.1023/A:1023926802198
Yamanishi C, Alshahni MM, Sano A, Nakamura I, Makimura K (2017) A new marker sequence for systematics of medically important fungi based on amino acid sequence of the largest subunit of RNA polymerase I. Med Mycol 55: 555–562. https://doi.org/10.1093/mmy/myw098
Zhang X, Takahashi H, Nakamura I Mii M (2008) Molecular discrimination among taxa of Petunia axillaris complex and P. integrifolia complex based on PolA1 sequence analysis. Breed Sci 58: 71–75. https://doi.org/10.1270/jsbbs.58.71
Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167: 249– 265. https://doi.org/10.1111/j.1469-8137.2005.01406.x
Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24: 875–888. https://doi.org/10.1093/molbev/msm005