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Abstract Since the concept of discrete memristor was proposed, more and more scholars began to study this topic.
At present, most of the works on the discrete memristor are devoted to the mathematical modeling and circuit
implementation, but the research on its synchronization control has not received much attention. This paper focuses
on the parameter identification for the discrete memristive chaotic map, and a modified intelligent optimization
algorithm named adaptive differential evolution algorithm is proposed. To deal with the complex behaviors of
hyperchaos and coexisting attractors of the considered discrete memristive chaotic maps, the identification objective
function adopts two special parts: time sequences and return maps. Numerical simulations demonstrate that the
proposed algorithm has the best performance among the six existing algorithms, and it can still accurately identify
the parameters of the original system under noise interference.

Keywords Parameter identification · discrete memristor · chaotic map · differential evolution algorithm · return
maps · coexisting attractors

1 Introduction

Memristor is a kind of nonlinear electronic component which connects the relationship between magnetic flux and
electric charge in the circuit [1]. Since Strukov et al. [2] successfully designed the real memristor in 2008, the
research on memristor becomes a hot topic. And it has received extensive attentions in the fields of materials [3],
artificial intelligence [4,5], circuits [6,7], etc.

The memristor is completely different from the traditional nonlinear electronic devices. Due to its special
nonlinearity, memristance and switching mechanism, it can produce a variety of complexity behaviors when build-
ing the oscillation circuits [8]. Consequently, the memristor is very suitable for constructing continuous chaotic
circuits to generate numerous special behaviors and apply to the engineering applications. So far, many interest-
ing phenomena are reported in the continuous memristor-based chaotic systems, like hyperchaos [9], extremely
multistability [10–12], hidden attractors [13–15] or offset-boosting [16]. In addition, some secure communication
applications based memristor-based chaotic systems are constantly proposed [17–19]. These studies are basically
based on the continuous-time domain, but there are not enough discussions in the discrete-time domain.

As a matter of fact, the structure of discrete nonlinear system is easier for the logic design of digital hardware
circuit. And it avoids the disadvantage that parameter sensitivity of the continuous nonlinear system, so the discrete
system is more concerned in the practical engineering. Inspired by the mathematical model of the continuous
memristor, the discussion of discrete memristor becomes a topical issue in recently [20–26]. He and Peng et al.
proposed the integer-order and fractional-order discrete memristor mathematical models, and introduced these
discrete models into the sine map [20] and two high-dimensional chaotic maps [21,22]. Simulations show that these
systems can not only enhance the complexity of the original system, but also have abundant dynamic behaviors
such as hyperchaos and coexistence attractors. Bao’s group presented several hyperchaotic maps based on the
discrete memristor [23–25], and verified the numerical results in digital circuits, which laid the foundation for the
practical applications of discrete memristor. Kong et al. [26] also reported a new discrete memristive chaotic map,
and the offset-boosting and amplitude control are discussed in detail by linear transformation. Although there are
more and more studies about the discrete memristive chaotic map, most of them focus on the system modeling
and the circuit implementation. The application of the discrete memristive chaotic map has not attracted much
attention, especially in its control and synchronization.
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Parameter identification is an important step in the control and synchronization of chaotic systems. With
the rise of artificial intelligence, it is very popular for utilizing intelligent optimization algorithm to identify the
parameters of a chaotic system. It converts the parameter identification into a multi-dimensional optimization
problem [27], and the prerequisite is just some time sequences generated by the original chaotic system. Compared
with the traditional identification method, it is simple and not sensitive to the considered system. For the Lorenz,
Chen, Rössler and other classical continuous chaotic systems, it emerges the differential evolution (DE) algorithm
[28,29], particle swarm optimization (PSO) algorithm [30,31], JAYA algorithm [32], artificial bee colony (ABC)
algorithm [33], bird swarm algorithm (BSA) [34] to identify the parameters of these systems. In contrast, only a
few reports focus on the parameter identification of discrete chaotic maps [35–37]. Due to the stronger sensitivity
of the parameters in discrete nonlinear systems, it is a difficult challenge to identify the parameters of discrete
chaotic maps, especially for the discrete memristive chaotic maps with coexisting attractors (dynamics guided by
initial state) [38]. This motivates us to study an intelligent method to accurately identify the parameters of the
discrete memristive chaotic maps with coexisting attractors.

The main contributions of this paper are summarized in the following: 1) a modified differential evolution
algorithm called adaptive differential evolution (ADE) algorithm is proposed. 2) The ADE algorithm is used for
the parameter identification of two discrete memristive chaotic maps with coexisting attractors. As far as the
authors know, this is the first time to study the parameter identification of the discrete memristive chaotic map.
3) In order to solve this complex parameter identification problem, the identification process is divided into two
special steps to deal with the global search and the local search, respectively. The remainder of this paper is
organized as follows. The preliminaries for parameter identification is introduced in Section 2. Section 3 introduces
the ADE algorithm. Numerical simulations are presented in Section 4. Finally, we summarize the conclusion and
gives the prospects for the future researches in Section 5.

2 Preliminaries of parameter identification

Preliminary knowledge of parameter identification is introduced in this section. The purpose of parameter iden-
tification is to make the parameters of the identification system match the parameters of the original system by
minimizing the error of dynamic behavior (i.e. objective function value) between the original system and the iden-
tification system. In this paper, two different errors of dynamic behavior are utilized for the identification process,
so this section is divided into two subsections: the parameter identification by time sequences and the parameter
identification by return maps.

2.1 Parameter identification by time sequences

Parameter identification by time series is the traditional identification method [39]. Its objective function is set
to the error of generated time sequences between original system and identification system. The main principle is
illustrated in Fig. 1.

 ΔX=F(X, t, θ )

+

x1 ,…, xM

-

~ ~ ~ ~

x0

x1 ,…, xM

~ ~

Intelligent 

optimization algorithm

Adjusting x0, θ 

ΔX=F(X, t, θ )
~ ~~x0

~

∑ 

~ ~

Objective 

function J

Fig. 1. The main principle of parameter identification by time sequences

Consider the original chaotic map
∆X = F(X, t, θ), (1)

where X = (x1, x2, ..., xM )T ∈ RM is the state vector, and M is the number of time sequences for identification
(1 ≤ M ≤ t). t is the iteration number, and x0 is the initial state. θ = (θ1, θ2, ..., θD)T ∈ RD denotes the original
system parameter and D is the number of identified system parameter.
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The identified system is

∆X̃ = F(X̃, t, θ̃), (2)

where X̃ = (x̃1, x̃2, ..., x̃M )T ∈ RM denotes the M -dimensional state vector of the identified system. θ̃ =
(θ̃1, θ̃2, ..., θ̃D)T is the identified system parameter. The objective function is J , which is calculated by

J =
1

M

M∑
k=1

(Xk − X̃k)2, (3)

where Xk and X̃k (k=1,2,...,M) are the state at the k-th time of the original system and the identification
system, respectively. Thus the parameter identification by time sequences can be regarded as a multi-dimensional
optimization problem which is solved by the intelligent optimization algorithm.

2.2 Parameter identification by return maps

Return maps is new approach for parameter identification problem [40]. Although it also collects a period of time
series as the identification samples, its objective function is based on the similarity of chaotic attractors between the
original and the identification system. Compared with the traditional parameter identification by time sequences,
the return maps approach is less disturbed by the sensitivity of system parameters, but the disadvantage is high
time-consuming [41]. Here, the return maps is only used for the local search to deal with the dilemma of local
optimum. The main principle of parameter identification by return maps is shown in Fig. 2.
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Fig. 2. The main principle of parameter identification by return maps

Consider a original system ∆X = F(X, t, θ) and a identified system ∆X̃ = F(X̃, t, θ̃). L1 and L2 are the
number of time sequences in which the original system and the identification system generate attractor structures,
respectively. The meanings of other symbols are consistent with those in the previous subsection. The specific
process of Step (a) and Step (b) in the figure is described as follows.

Step (a): For each point in the original system, find their nearest neighbors in the identification system, and
calculate the Euclidean distance between them.

Step (b): For each point in the identified system, find their nearest neighbors in the original system, and
calculate their Euclidean distance like Step (a).

Add all the Euclidean distances obtained in Step (a) and Step (b) to get the D, and the objective function is
calculated by

J = D/(L1 + L2). (4)

The above process is repeated until all the ranges of parameters are searched done. Finally, the identified parameters
with objective function of value 0 are the parameters of the original system.

3 Adaptive differential evolution algorithm

Here, the differential evolution (DE) algorithm is employed as the intelligent optimization algorithm for parameter
identification. DE algorithm is a famous nature-inspired metaheuristics algorithm for solving multi-dimensional
numerical optimization problem [42]. It has four main steps: initialization, mutation, crossover and selection.
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3.1 Process of classical DE algorithm

Initialization: The first stage is to initialize the population in the multi-dimensional variable space. Suppose
that there are NP biological individuals in the m-dimensional space, where the i-th (i = 1, 2, ..., NP ) individual
is symbolized by Ni,g = (n1

i,g, n
2
i,g, ..., n

m
i,g), and g, G is the current number of generation and the maximum

number of generation, respectively. The lower search bound and the upper search bound are defined by Nmin =
(n1

min, n
2
min, ..., n

m
min) and Nmax = (n1

max, n
2
max, ..., n

m
max), respectively. Ni,g is randomly initialized as

N j
i,0 = nj

min + rand(0, 1)(nj
max − nj

min), (5)

where j = 1, 2, 3, ...,m. rand(0, 1) is a random number generated between 0 and 1.

Mutation: In the nature-inspired metaheuristics algorithm, mutation is taken as a sudden change or pertur-
bation with a random element. Each individual generates a new individual by the mutation step, and the new
individual is called the mutant vector Vi,g. The most common mutation definition is

Vi,g = Nr1,g + F (Nr2,g −Nr3,g), (6)

where r1, r2 and r3 are randomly selected from [1, NP ]. F is the scaling factor, which is a real number between
[0, 1].

Crossover: The crossover is employed to generate the trial vectors Ui,g = (u1i,g, u
2
i,g, ..., u

j
i,g). In this step,

mutant vectors are combined with the original individuals of the current population to form the trial vectors. In
general, the binomial recombination is performed on each variable

uji,g =

{
vji,g, if rand(0, 1) ≤ CR or j = jrand,

nj
i,g, else,

(7)

where jrand is randomly selected to ensure that the trial vector could get at least one component from the mutant
vector (jrand ∈ [1,m]). CR is called the crossover probability.

Selection: The selection is employed to generate the next generation population. Just like the survival of the
fittest in biology, individuals with smaller (or bigger) value are preserved. Obviously, the parameter identification
is a minimum optimization problem, so individuals with smaller objective function value are retained, and the
selection operation is

Ni,g+1 =

{
Ui,g, if f(Ui,g) ≤ f(Ni,g),
Ni,g, else,

(8)

where f(·) is the objective function.

3.2 Adaptive strategy

The classical DE algorithm doesn’t deal with all kinds of optimization problems perfectly. In the face of some
high-dimensional complex problems, the classcial algorithm would meet the problems of slow convergence rate or
low precision [43], so it still necessary to improve the DE algorithm.

There are two main control parameters of the DE algorithm: the crossover probability CR and the mutation
scale factor F . Especially for the value of CR, it is very important to the search process of DE algorithm. Large
CR value is more conducive to the global search, but it is easy to premature convergence. On the contrary, small
CR is more conducive to local search, but the search rate is relatively slow. According to the aggregation degree
of individuals in the search process, an adaptive strategy for CR is proposed as

CR = max{0.7, 1− f(Gb)/f(Wb)}, (9)

where Gb and Wb represents the current global optimal vector and the global worst vector, respectively. In addition,
according to the situation that the algorithm is easy to fall into premature in the search process, a random mutation
factor F is also proposed as

F = rand(0, 1)0.1 + 0.45. (10)

Based on the two improvements, the new DE algorithm is named the adaptive differential evolution (ADE)
algorithm. Finally, the execution process of ADE algorithm is presented in Algorithm 1.
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Algorithm 1 Pseudo code of ADE in parameter identification.

1: Set the value of NP , G, Nmin, Nmax

2: Initialize the population according Eq. (5)
3: Calculate the objective function value of each individual, find the Gb and the Wb
4: while g < G do
5: Update CR by Eq. (9) and F by Eq. (10)
6: Update the individual’s mutant vector and trial vector by Eq. (6) and Eq. (7), respectively
7: Calculate the individual’s objective function value
8: if f(Ui,g) ≤ f(Ni,g) then
9: Ni,g+1 is replaced by Ui,g

10: else
11: Ni,g+1 is replaced by Ni,g

12: g = g + 1

4 Numerical simulations

To verify the effectiveness and advantage of the proposed ADE algorithm, simulations were carried out in two
discrete memristive chaotic maps. Five intelligent optimization algorithms, including DE algorithm [43], PSO
algorithm [44], JAYA algorithm [45], ABC algorithm [46] and BSA [47] were chosen for the comparison. Simulations
were done based on MATLAB 2020a in Intel(R) Core(TM) i7-7700HQ CPU @2.80-GHz with 8 GB RAM.

4.1 Identified systems

The second-order discrete memristive chaotic map is [23]{
xn+1 = xn − kxn cos(yn),
yn+1 = yn + εxn,

(11)

where k and ε are two positive system parameters. In general, ε is fixed to ε = 1.
Another second-order discrete memristive chaotic map is [26]{

xn+1 = a sin(xn) sin(yn) + (1− 0.1 | yn |)xn,
yn+1 = 0.4xn + yn,

(12)

where a is the system parameter and a 6= 1.
When the parameters of System (11) are set to k = 2.75, x(0) = 0.5, y(0) = −0.5 (Lyapunov exponents:

0.1804, 0.1123) and the parameters of System (12) are set to a = 3.5, x(0) = 1, y(0) = −2 (Lyapunov exponents:
0.2593, 0.0361), both of the two systems exhibit hyperchaotic behavior, and the phase diagrams of hyperchaotic
attractor are shown in Fig. 3. Furthermore, the two discrete memristive chaotic maps have been proved to have
the special characteristic of coexisting attractors. So, the dynamic behaviors of the two systems under this set of
parameters are very complex. In the following simulations, these parameters k = 2.75, x0 = 0.5, y0 = −0.5 and
a = 3.5, x0 = 1, y0 = −2 were selected as the original system parameters.

a b

Fig. 3. Hyperchaotic attractor for (a) system (11) with parameters k = 2.75, x(0) = 0.5, y(0) = −0.5 and (b) system (12) with
parameters a = 3.5, x(0) = 1, y(0) = −2
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4.2 Parameter identification by different algorithms

In this subsection, the parameter identification by time sequences was carried out under six intelligent optimization
algorithms. The maximum number generation of each algorithms was set to G = 100, and other settings are
presented in Table 1. The number of time sequences was M = 3. To eliminate the stochastic nature of the
algorithms, we performed 100 consecutive algorithm runs. The search ranges of the original system parameters
were set as: 0 ≤ k ≤ 4,−4 ≤ x0 ≤ −4,−4 ≤ y0 ≤ 4 for system (11) and 0 ≤ a ≤ 4,−4 ≤ x0 ≤ −4,−4 ≤ y0 ≤ 4 for
system (12).

Table 1. Parameter settings of the intelligent optimization algorithms

Algorithm Parameters
DE [43] NP = 40, F = 0.6, CR = 0.6

PSO [44] NP = 40, c1 = c2 = 2, ωmax = 9.0, ωmin = 0.4
JAYA [45] NP = 40
ABC [46] NP = 40, limit = 100
BSA [47] NP = 40, C = S = 1.5, a1 = a2 = 1, FQ = 3, P ∈ [0.8, 1], FL ∈ [0.5, 0.9]

The simulation results for parameter identification by time sequences under different algorithms are listed in
Table 2. The statistical results of the best J value, average J value and accurate identification rate are given in this
table. Generally, the smaller the value of objective function J is, the higher the identification accuracy is. When
the error between each identification parameters and the corresponding original parameters is less than 1e-04, it is
considered as the accurate identification. From Table 2, it is shown that DE, PSO, BSA and ADE algorithms can
accurately identify the parameters of the original system. But the JAYA algorithm and ABC algorithm are invalid
for the two discrete memristive chaotic maps. According to the accurate identification rate, the ADE algorithm
has the best precision, and the accuracy of the modified algorithm is much higher than that of the classical DE
algorithm. PSO algorithm and BSA algorithm are ranked in the second and the third, respectively. In addition, it
should be noticed that the identification difficulty of system (11) is higher than that of system (12).

Table 2. Parameter identification by different algorithms

Chaotic map Algorithm Best J value Average J value Accurate identification rate

System (11)

DE 6.7144e-10 1.2865e-06 3%
PSO 1.2290e-14 7.4035e-11 45%
JAYA 4.4898e-03 1.3961e-01 0
ABC 1.8601e-05 8.9198e-04 0
BSA 1.6935e-14 1.5328e-03 26%
ADE 1.1950e-21 4.1163e-15 66%

System (12)

DE 2.5904e-10 2.2351e-06 1%
PSO 2.5824e-14 6.0965e-11 28%
JAYA 2.9983e-03 1.0712e-01 0
ABC 2.0735e-06 3.5651e-04 0
BSA 6.7133e-14 1.4658e-06 10%
ADE 1.5215e-20 1.5768e-14 49%

Although four algorithms have probability to accurately identify the parameters of the original system, they
inevitably fall into the local optimum (i.e. the final identified parameters can not converge to the original param-
eters). To check the specific identification results, the final identified parameters of the ADE, PSO and BSA are
listed in Table 3. It shows that these algorithms are very accurate for the identification of system parameters,
but there are many local optimal solutions for the initial state identification. The PSO algorithm and BSA algo-
rithm have more than two local optimal solutions, while the ADE algorithm has only one local optimal solution.
Therefore, the ADE algorithm has higher accuracy and better stability.

When the system parameters is fixed to k = 2.75, a = 3.5 and the initial states are set as variable, the J value
of parameter identification by time sequences for system (11) and (12) are plotted in Fig. 4 and 5, respectively. In
the figures, dark blue indicates that the value of the objective function is low (i.e. the smaller error). The figures
show that there is a large area of local optimal region near the global optimum, and the difference of J value
between local optimal region and global optimum is only about 1e-02 to 1e-05. Thus, due to the special property
of coexisting attractors in the two maps, the change of initial state has big influence on the dynamic behavior,
resulting in the situation of multiple local optimal solutions. To solve this problem, the return maps approach is
introduced in the following.
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Table 3. Identified paramters by ADE, PSO and BSA algorithms

Chaotic map Algorithm Identified paramters Probability

System (11)

ADE
k̃ = 2.7500, x̃0 = 0.5000, ỹ0 = −0.5000 66%

k̃ = 2.7500, x̃0 = 0.8344, ỹ0 = −0.8344 34%

PSO
k̃ = 2.7500, x̃0 = 0.5000, ỹ0 = −0.5000 45%

k̃ = 2.7500, x̃0 = 0.8344, ỹ0 = −0.8344 37%

k̃ = 2.7500, x̃0 = −1.3909, ỹ0 = 1.3909 18%

BSA

k̃ = 2.7500, x̃0 = 0.5000, ỹ0 = −0.5000 26%

k̃ = 2.7500, x̃0 = 0.8344, ỹ0 = −0.8344 34%

k̃ = 2.7500, x̃0 = −1.3909, ỹ0 = 1.3909 16%
Others 24%

System (12)

ADE
ã = 3.5000, x̃0 = 1.0000, ỹ0 = −2.0000 49%
ã = 3.5000, x̃0 = 1.2534, ỹ0 = −2.1014 51%

PSO
ã = 3.5000, x̃0 = 1.0000, ỹ0 = −2.0000 28%
ã = 3.5000, x̃0 = 1.2534, ỹ0 = −2.1014 35%
ã = 3.4999, x̃0 = −2.7196, ỹ0 = −0.5121 37%

BSA

ã = 3.5000, x̃0 = 1.0000, ỹ0 = −2.0000 10%
ã = 3.5000, x̃0 = 1.2534, ỹ0 = −2.1014 41%
ã = 3.4999, x̃0 = −2.7196, ỹ0 = −0.5121 38%
Others 11%

a b

Global optimum

Fig. 4. The objective function J value of parameter identification by time sequences for system (11) (a) two-dimensional contour
figure (b) three-dimensional contour figure

a b

Global optimum

Fig. 5. The objective function J value of parameter identification by time sequences for system (12) (a) two-dimensional contour
figure (b) three-dimensional contour figure

4.3 Hybrid method for parameter identification

Because there is the local optimal solution problem when using time sequences for parameter identification, the
return maps method is employed for the local search. Due to the better performance of ADE algorithm, other
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algorithms are not considered in this subsection. Thus, a hybrid method is proposed (ADE-Return maps), which
consists of two steps: the ADE algorithm of parameter identification by time sequences is utilized for global search,
and the parameter identification by return maps is utilized for local search. Its specific implementation process is
presented in Algorithm 2. The number of time sequences for constructing attractor shapes was set to M = 300.

Algorithm 2 Pseudo code of ADE-Return maps in parameter identification.

1: Execute Algorithm 1
2: Find the global optimal vector Gb
3: low = roundn(Gb, 2) - 0.5, upp = roundn(Gb, 2) + 0.5
4: C = low: 0.01 : upp
5: for c = length(C) do
6: Calculate the objective function value J = f(c)

7: Find the smallest objective function value min(J)
8: Find the new global optimal vector Gb

a b

Global optimum

Fig. 6. The objective function J value of parameter identification by return maps for system (11) (a) two-dimensional contour
figure (b) three-dimensional contour figure

a b

Global optimum

Fig. 7. The objective function J value of parameter identification by return maps for system (12) (a) two-dimensional contour
figure (b) three-dimensional contour figure

Similarly, when the system parameters are fixed and the initial states are set to the variable, the J value
of parameter identification by return maps for system (11) and (12) are plotted in Fig. 6 and 7, respectively.
Obviously, the change of J value in return maps method is more drastic than that of the parameter identification
by time sequences (it’s similar to the difference between the high-rise buildings in the city and the rolling hills).
It is because the change of the initial states leads to the sudden change of the attractor structure, which is far
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greater than the error between time sequences. And the difference of J value between local optimal region and
global optimum is about 0.1, this is much larger than that of the parameter identification by time sequences.

a b

Global optimum

Fig. 8. Parameter identification by ADE-Return maps for (a) system (11) (b) system (12)

As shown in Table 3, there is always only one local optimal solution by the ADE algorithm, so the local search
by return maps can be carried out according to the local optimal solution (here the search range is set to the local
optimal solution ±0.5). Hence, such a mechanism ensures that the ADE-Return maps method can find the global
optimal solution, as shown in the white star in Fig 8.

4.4 Noise interference

Numerical simulation of parameter identification by ADE-Return maps under noise interference is investigated in
this subsection. The additive white Gaussian noise (AWGN) is considered in the time sequences and the attractor
structure obtained by the original system.

a b

Global optimum

Fig. 9. Parameter identification for system (11) with noise (a) SNR 20 dB (b) SNR 15 dB

The numerical simulation results for system (11) are presented in Fig. 9. It is illustrated that the ADE-Return
maps successfully finds the global optimum (namely x0 = 0.5, y0 = −0.5) with the signal-to-noise ratio (SNR) 20dB.
However, it cannot find the correct global optimum with SNR 15dB. The results for system (12) are illustrated in
Fig. 10. It also shows that the ADE-Return maps can identify the global optimum (namely x0 = 1, y0 = −2) until
the SNR reaches 15dB. The experiments show that the proposed approach has good anti-noise performance. For
the two discrete memristive chaotic maps, it can resist noise larger than SNR 20dB.
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a b

Global optimum

Fig. 10. Parameter identification for system (12) with noise (a) SNR 20 dB (b) SNR 15 dB

5 Conclusion

In this paper, an improved intelligent optimization algortihm called ADE algorithm is proposed for the parameter
identification. The target system is two discrete memristive chaotic maps with complex hyperchaotic behaviors and
coexisting attractors. In order to solve the problem of falling into the local optimal solutions, the ADE algorithm
based on the two objective function of time seqences error and return maps is employed. Numerical simulation
results lead to the following conclusions.

(a) For the parameter identification by time sequences, the proposed ADE algorithm outperforms the other five
intelligent optimization algorithms, due to the highest identification accuracy and only one local optimal solution.

(b) By utilizing the return maps as the objective function, the ADE algorithm successfully jumps out of the
local optimal solution and find the global optimum.

(c) After considering the interference of AWGN, the proposed approach still finds the global optimum when
SNR reaches 15dB.

In the numerical simulations, the factors in real-world applications are studied, including unknown system
parameters, unknown initial values and noise. These simulations were therefore theoretically constitute a possibility
for the synchronization control of the discrete memristive chaotic maps. What is more important is that the
introduced approach may be a useful tool for the future applications of discrete memristor. Our next work is to
try to apply this method in the secure communication.
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