1. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).
2. Van Meer, G. & De Kroon, A. I. P. M. Lipid map of the mammalian cell. J. Cell Sci. 124, 5–8 (2011).
3. Antonny, B., Vanni, S., Shindou, H. & Ferreira, T. From zero to six double bonds: Phospholipid unsaturation and organelle function. Trends Cell Biol. 25, 427–436 (2015).
4. Liebisch, G. et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 61, 1539–1555 (2020).
5. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).
6. Vriens, K. et al. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature 566, 403–406 (2019).
7. Mori, A. et al. Parkinson’s disease-associated iPLA2-VIA/ PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling. Proceedings of the National Academy of Sciences 116, 20689–20699 (2019).
8. Rabionet, M. et al. Male meiotic cytokinesis requires ceramide synthase 3-dependent sphingolipids with unique membrane anchors. Hum. Mol. Genet. 24, 4792–4808 (2015).
9. Wenk, M. R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610 (2005).
10. Nguyen, D. H., Nguyen, C. H. & Mamitsuka, H. Recent advances and prospects of computational methods for metabolite identification: a review with emphasis on machine learning approaches. Brief. Bioinform. 00, 1–16 (2018).
11. Tsugawa, H. et al. Comprehensive identification of sphingolipid species by in silico retention time and tandem mass spectral library. J. Cheminform. 9, (2017).
12. Koelmel, J. P. et al. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics 18, (2017).
13. Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 38, 1159–1163 (2020).
14. Qian, H. et al. Structural basis for catalysis and substrate specificity of human ACAT1. Nature 581, 333–338 (2020).
15. Ishihara, T., Yoshida, M. & Arita, M. Omega-3 fatty acid-derived mediators that control inflammation and tissue homeostasis. Int. Immunol. 31, 559–567 (2019).
16. Harayama, T. & Shimizu, T. Roles of polyunsaturated fatty acids, from mediators to membranes. J. Lipid Res. 61, jlr.R120000800 (2020).
17. Martinez-Seara, H. et al. Effect of double bond position on lipid bilayer properties: Insight through atomistic simulations. J. Phys. Chem. B 111, 11162–11168 (2007).
18. Zhang, W. et al. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat. Commun. 10, 1–9 (2019).
19. Cao, W. et al. Large-scale lipid analysis with C=C location and sn-position isomer resolving power. Nat. Commun. 11, 375 (2020).
20. Zhao, X., Wu, G., Zhang, W., Dong, M. & Xia, Y. Resolving Modifications on Sphingoid Base and N-Acyl Chain of Sphingomyelin Lipids in Complex Lipid Extracts. Anal. Chem. 92, 14775–14782 (2020).
21. Xie, X., Zhao, J., Lin, M., Zhang, J.-L. & Xia, Y. Profiling of Cholesteryl Esters by Coupling Charge-Tagging Paternò–Büchi Reaction and Liquid Chromatography–Mass Spectrometry. Anal. Chem. 92, 8487–8496 (2020).
22. Xie, X. & Xia, Y. Analysis of Conjugated Fatty Acid Isomers by the Paternò-Büchi Reaction and Trapped Ion Mobility Mass Spectrometry. Anal. Chem. 91, 7173–7180 (2019).
23. Feng, Y., Chen, B., Yu, Q. & Li, L. Identification of Double Bond Position Isomers in Unsaturated Lipids by m-CPBA Epoxidation and Mass Spectrometry Fragmentation. Anal. Chem. 91, 1791–1795 (2019).
24. Kuo, T.-H. et al. Deep Lipidomics and Molecular Imaging of Unsaturated Lipid Isomers: A Universal Strategy Initiated by mCPBA Epoxidation. Anal. Chem. 91, 11905–11915 (2019).
25. Williams, P. E., Klein, D. R., Greer, S. M. & Brodbelt, J. S. Pinpointing Double Bond and sn-Positions in Glycerophospholipids via Hybrid 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. J. Am. Chem. Soc. 139, 15681–15690 (2017).
26. Ryan, E., Nguyen, C. Q. N., Shiea, C. & Reid, G. E. Detailed Structural Characterization of Sphingolipids via 193 nm Ultraviolet Photodissociation and Ultra High Resolution Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 28, 1406–1419 (2017).
27. West, H. & Reid, G. E. Hybrid 213 nm photodissociation of cationized Sterol lipid ions yield [M]+. Radical products for improved structural characterization using multistage tandem mass spectrometry. Anal. Chim. Acta 1141, 100–109 (2021).
28. Fang, M., Rustam, Y., Palmieri, M., Sieber, O. M. & Reid, G. E. Evaluation of ultraviolet photodissociation tandem mass spectrometry for the structural assignment of unsaturated fatty acid double bond positional isomers. Anal. Bioanal. Chem. 412, 2339–2351 (2020).
29. Thomas, M. C. et al. Ozone-induced dissociation: Elucidation of double bond position within mass-selected lipid ions. Anal. Chem. 80, 303–311 (2008).
30. Marshall, D. L. et al. Mapping Unsaturation in Human Plasma Lipids by Data-Independent Ozone-Induced Dissociation. J. Am. Soc. Mass Spectrom. 30, 1621–1630 (2019).
31. Barrientos, R. C., Vu, N. & Zhang, Q. Structural Analysis of Unsaturated Glycosphingolipids Using Shotgun Ozone-Induced Dissociation Mass Spectrometry. J. Am. Soc. Mass Spectrom. 28, 2330–2343 (2017).
32. Marshall, D. L. et al. Sequential Collision- and Ozone-Induced Dissociation Enables Assignment of Relative Acyl Chain Position in Triacylglycerols. Anal. Chem. 88, 2685–2692 (2016).
33. Pham, H. T., Maccarone, A. T., Campbell, J. L., Mitchell, T. W. & Blanksby, S. J. Ozone-induced dissociation of conjugated lipids reveals significant reaction rate enhancements and characteristic odd-electron product ions. J. Am. Soc. Mass Spectrom. 24, 286–296 (2013).
34. Campbell, J. L. & Baba, T. Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics. Anal. Chem. 87, 5837–5845 (2015).
35. Baba, T., Campbell, J. L., Blanc, J. C. Y. L. & Baker, P. R. S. In-depth sphingomyelin characterization using electron impact excitation of ions from organics and mass spectrometry. J. Lipid Res. 57, 858–867 (2016).
36. Baba, T., Campbell, J. L., Le Blanc, J. C. Y. & Baker, P. R. S. Structural identification of triacylglycerol isomers using electron impact excitation of ions from organics (EIEIO). J. Lipid Res. 57, 2015–2027 (2016).
37. Baba, T., Larry Campbell, J., Yves Le Blanc, J. C., Baker, P. R. S. & Ikeda, K. Quantitative structural multiclass lipidomics using differential mobility: electron impact excitation of ions from organics (EIEIO) mass spectrometry. J. Lipid Res. 59, 910–919 (2018).
38. Bednařík, A., Bölsker, S., Soltwisch, J. & Dreisewerd, K. An On-Tissue Paternò-Büchi Reaction for Localization of Carbon-Carbon Double Bonds in Phospholipids and Glycolipids by Matrix-Assisted Laser-Desorption-Ionization Mass-Spectrometry Imaging. Angew. Chem. Int. Ed Engl. 57, 12092–12096 (2018).
39. Klein, D. R. et al. Desorption Electrospray Ionization Coupled with Ultraviolet Photodissociation for Characterization of Phospholipid Isomers in Tissue Sections. Anal. Chem. 90, 10100–10104 (2018).
40. Bednařík, A. et al. Ozonization of Tissue Sections for MALDI MS Imaging of Carbon-Carbon Double Bond Positional Isomers of Phospholipids. Anal. Chem. 92, 6245–6250 (2020).
41. Wäldchen, F., Spengler, B. & Heiles, S. Reactive Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Using an Intrinsically Photoreactive Paternò-Büchi Matrix for Double-Bond Localization in Isomeric Phospholipids. J. Am. Chem. Soc. 141, 11816–11820 (2019).
42. Paine, M. R. L. et al. Mass Spectrometry Imaging with Isomeric Resolution Enabled by Ozone-Induced Dissociation. Angew. Chem. Int. Ed Engl. 57, 10530–10534 (2018).
43. Korf, A., Jeck, V., Schmid, R., Helmer, P. O. & Hayen, H. Lipid Species Annotation at Double Bond Position Level with Custom Databases by Extension of the MZmine 2 Open-Source Software Package. Anal. Chem. 91, 5098–5105 (2019).
44. Takahashi, H. et al. Structural Analysis of Phospholipid Using Hydrogen Abstraction Dissociation and Oxygen Attachment Dissociation in Tandem Mass Spectrometry. Anal. Chem. 90, 7230–7238 (2018).
45. Kozakai, R. et al. Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides. Nat. Chem. 12, 869–877 (2020).
46. Takahashi, H. et al. Identifying double bond positions in phospholipids using liquid chromatography-triple quadrupole tandem mass spectrometry based on oxygen attachment dissociation. Mass Spectrom. 8, 1–6 (2020).
47. Yen, C.-Y., Houel, S., Ahn, N. G. & Old, W. M. Spectrum-to-spectrum searching using a proteome-wide spectral library. Mol. Cell. Proteomics 10, M111.007666 (2011).
48. Aoyagi, R., Ikeda, K., Isobe, Y. & Arita, M. Comprehensive analyses of oxidized phospholipids using a measured MS/MS spectra library. J. Lipid Res. 58, 2229–2237 (2017).
49. Blevins, M. S. et al. Unsaturation Elements and Other Modifications of Phospholipids in Bacteria: New Insight from Ultraviolet Photodissociation Mass Spectrometry. Anal. Chem. 92, 9146–9155 (2020).
50. Irie, A., Kubo, H. & Hoshi, M. Glucosylceramide having a novel tri-unsaturated long-chain base from the spermatozoa of the starfish, Asterias amurensis. J. Biochem. 107, 578–586 (1990).
51. Ohashi, Y. et al. Squid nerve sphingomyelin containing an unusual sphingoid base. J. Lipid Res. 41, 1118–1124 (2000).
52. Cha, H. J. et al. Intercellular and intracellular functions of ceramides and their metabolites in skin (Review). Int. J. Mol. Med. 38, 16–22 (2016).
53. Hirabayashi, T. et al. PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat. Commun. 8, 14609 (2017).
54. Ohno, Y., Kamiyama, N., Nakamichi, S. & Kihara, A. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat. Commun. 8, 14610 (2017).
55. Oresti, G. M., García-López, J., Aveldanõ, M. I. & Del Mazo, J. Cell-type-specific regulation of genes involved in testicular lipid metabolism: Fatty acid-binding proteins, diacylglycerol acyltransferases, and perilipin 2. Reproduction 146, 471–480 (2013).
56. Casado, M. E. et al. Hormone-sensitive lipase deficiency disturbs the fatty acid composition of mouse testis. Prostaglandins Leukot. Essent. Fatty Acids 88, 227–233 (2013).
57. Jojima, K., Edagawa, M., Sawai, M., Ohno, Y. & Kihara, A. Biosynthesis of the anti-lipid-microdomain sphingoid base 4,14-sphingadiene by the ceramide desaturase FADS3. FASEB J. 34, 3318–3335 (2020).
58. Karsai, G. et al. FADS3 is a Δ14Z sphingoid base desaturase that contributes to gender differences in the human plasma sphingolipidome. J. Biol. Chem. 295, 1889–1897 (2020).
59. Mashima, R., Okuyama, T. & Ohira, M. Biosynthesis of long chain base in sphingolipids in animals, plants and fungi. Future Science OA 6, (2019).
60. Adem, A. A. et al. Structural characterization of plant glucosylceramides and the corresponding ceramides by UHPLC-LTQ-Orbitrap mass spectrometry. J. Pharm. Biomed. Anal. 192, 113677 (2021).
61. Aveldano, M. I. Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of photoreceptor membranes. Biochemistry 27, 1229–1239 (1988).
62. Do, K. V. et al. Elovanoids counteract oligomeric β-amyloid-induced gene expression and protect photoreceptors. Proc. Natl. Acad. Sci. U. S. A. 116, 24317–24325 (2019).
63. Bhattacharjee, S. et al. Elovanoids are a novel class of homeostatic lipid mediators that protect neural cell integrity upon injury. Sci Adv 3, e1700735 (2017).
64. Psychogios, N. et al. The human serum metabolome. PLoS One 6, e16957 (2011).
65. Wishart, D. S. et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).
66. Aveldaño, M. I., Rotstein, N. P. & Vermouth, N. T. Occurrence of long and very long polyenoic fatty acids of the n-9 series in rat spermatozoa. Lipids 27, 676–680 (1992).
67. Oresti, G. M., Luquez, J. M., Furland, N. E. & Aveldaño, M. I. Uneven distribution of ceramides, sphingomyelins and glycerophospholipids between heads and tails of rat spermatozoa. Lipids 46, 1081–1090 (2011).
68. Asakawa, D., Takahashi, H., Sekiya, S., Iwamoto, S. & Tanaka, K. Sequencing of Sulfopeptides Using Negative-Ion Tandem Mass Spectrometry with Hydrogen Attachment/Abstraction Dissociation. Anal. Chem. 91, 10549–10556 (2019).
69. Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).