1. Floyd, D.N., Langham, S., Severac, H.C. & Levesque, B.G. The economic and quality-of-life burden of Crohn's disease in Europe and the United States, 2000 to 2013: a systematic review. Dig Dis Sci 60, 299-312 (2015).
2. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655-662 (2019).
3. Pascal, V. et al. A microbial signature for Crohn's disease. Gut 66, 813-822 (2017).
4. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105, 16731-16736 (2008).
5. Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65, 1906-1915 (2016).
6. Nguyen, L.H. et al. Antibiotic use and the development of inflammatory bowel disease: a national case-control study in Sweden. Lancet Gastroenterol Hepatol 5, 986-995 (2020).
7. Aden, K. et al. Metabolic Functions of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases. Gastroenterology 157, 1279-1292 e1211 (2019).
8. Ananthakrishnan, A.N. et al. Gut Microbiome Function Predicts Response to Anti-integrin Biologic Therapy in Inflammatory Bowel Diseases. Cell Host Microbe 21, 603-610 e603 (2017).
9. Doherty, M.K. et al. Fecal Microbiota Signatures Are Associated with Response to Ustekinumab Therapy among Crohn's Disease Patients. mBio 9 (2018).
10. Ghouri, Y.A. et al. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin Exp Gastroenterol 7, 473-487 (2014).
11. Sierra, S. et al. Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe 16, 195-200 (2010).
12. Kumar, A. et al. Lactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with Citrobacter rodentium. Am J Physiol Gastrointest Liver Physiol 311, G817-G826 (2016).
13. Saez-Lara, M.J., Gomez-Llorente, C., Plaza-Diaz, J. & Gil, A. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. Biomed Res Int 2015, 505878 (2015).
14. Macho Fernandez, E. et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60, 1050-1059 (2011).
15. Lindemans, C.A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560-564 (2015).
16. Monteleone, I. et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141, 237-248, 248 e231 (2011).
17. Mielke, L.A. et al. Retinoic acid expression associates with enhanced IL-22 production by gammadelta T cells and innate lymphoid cells and attenuation of intestinal inflammation. J Exp Med 210, 1117-1124 (2013).
18. Hrdy, J. et al. Lactobacillus reuteri 5454 and Bifidobacterium animalis ssp. lactis 5764 improve colitis while differentially impacting dendritic cells maturation and antimicrobial responses. Sci Rep 10, 5345 (2020).
19. Bens, M. et al. Transimmortalized mouse intestinal cells (m-ICc12) that maintain a crypt phenotype. The American journal of physiology 270, C1666-1674 (1996).
20. Liu, Y. et al. NCR(-) group 3 innate lymphoid cells orchestrate IL-23/IL-17 axis to promote hepatocellular carcinoma development. EBioMedicine 41, 333-344 (2019).
21. Roselli, M. et al. Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of gammadeltaT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflamm Bowel Dis 15, 1526-1536 (2009).
22. Eun, S.H., Lim, S.M., Jang, S.E., Han, M.J. & Kim, D.H. Lactobacillus sakei K17, an inducer of IL-10 expression in antigen-presenting cells, attenuates TNBS-induced colitis in mice. Immunopharmacol Immunotoxicol 38, 447-454 (2016).
23. Peran, L. et al. A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis. J Appl Microbiol 103, 836-844 (2007).
24. Hugo, A.A., Rolny, I.S., Romanin, D. & Perez, P.F. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium. World J Microbiol Biotechnol 33, 48 (2017).
25. Chen, C.C., Chiu, C.H., Lin, T.Y., Shi, H.N. & Walker, W.A. Effect of probiotics Lactobacillus acidophilus on Citrobacter rodentium colitis: the role of dendritic cells. Pediatr Res 65, 169-175 (2009).
26. Kennedy, R.J., Hoper, M., Deodhar, K., Kirk, S.J. & Gardiner, K.R. Probiotic therapy fails to improve gut permeability in a hapten model of colitis. Scand J Gastroenterol 35, 1266-1271 (2000).
27. Anjum, N. et al. Lactobacillus acidophilus: characterization of the species and application in food production. Crit Rev Food Sci Nutr 54, 1241-1251 (2014).
28. Chen, C.C., Louie, S., Shi, H.N. & Walker, W.A. Preinoculation with the probiotic Lactobacillus acidophilus early in life effectively inhibits murine Citrobacter rodentium colitis. Pediatr Res 58, 1185-1191 (2005).
29. Foye, O.T., Huang, I.F., Chiou, C.C., Walker, W.A. & Shi, H.N. Early administration of probiotic Lactobacillus acidophilus and/or prebiotic inulin attenuates pathogen-mediated intestinal inflammation and Smad 7 cell signaling. FEMS Immunol Med Microbiol 65, 467-480 (2012).
30. Al-Sadi, R. et al. Lactobacillus acidophilus Induces a Strain-specific and Toll-Like Receptor 2-Dependent Enhancement of Intestinal Epithelial Tight Junction Barrier and Protection Against Intestinal Inflammation. Am J Pathol 191, 872-884 (2021).
31. Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206, 1465-1472 (2009).
32. Amdekar, S., Singh, V., Kumar, A., Sharma, P. & Singh, R. Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 33, 1-8 (2013).
33. Chen, L.L., Zou, Y.Y., Lu, F.G., Li, F.J. & Lian, G.H. Efficacy profiles for different concentrations of Lactobacillus acidophilus in experimental colitis. World J Gastroenterol 19, 5347-5356 (2013).
34. Papai, G. et al. The Administration Matrix Modifies the Beneficial Properties of a Probiotic Mix of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus acidophilus LA-5. Probiotics Antimicrob Proteins 13, 484-494 (2021).
35. Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118, 534-544 (2008).
36. Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity 21, 241-254 (2004).
37. Cazorla, S.I., Maldonado-Galdeano, C., Weill, R., De Paula, J. & Perdigon, G.D.V. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity. Front Microbiol 9, 736 (2018).
38. Gao, J. et al. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front Cell Infect Microbiol 8, 13 (2018).
39. Yitbarek, A. et al. Gut microbiota-mediated protection against influenza virus subtype H9N2 in chickens is associated with modulation of the innate responses. Sci Rep 8, 13189 (2018).
40. Bernink, J.H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14, 221-229 (2013).
41. Dudakov, J.A., Hanash, A.M. & van den Brink, M.R. Interleukin-22: immunobiology and pathology. Annu Rev Immunol 33, 747-785 (2015).
42. Hou, Q. et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ 25, 1657-1670 (2018).
43. Depner, M. et al. Bacterial microbiota of the upper respiratory tract and childhood asthma. J Allergy Clin Immunol 139, 826-834 e813 (2017).
44. Natividad, J.M. et al. Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metab 28, 737-749 e734 (2018).
45. Etienne-Mesmin, L., Chassaing, B. & Gewirtz, A.T. Tryptophan: A gut microbiota-derived metabolites regulating inflammation. World J Gastrointest Pharmacol Ther 8, 7-9 (2017).
46. Qi, H. et al. Lactobacillus maintains healthy gut mucosa by producing L-Ornithine. Commun Biol 2, 171 (2019).
47. O'Connor, W., Jr. et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 10, 603-609 (2009).
48. Ueno, A. et al. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflamm Bowel Dis 19, 2522-2534 (2013).
49. Ogawa, A., Andoh, A., Araki, Y., Bamba, T. & Fujiyama, Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 110, 55-62 (2004).
50. O'Connor, W., Zenewicz, L.A. & Flavell, R.A. The dual nature of TH17 cells: shifting the focus to function. Nature Immunology 11, 471-476 (2010).
51. Kinugasa, T., Sakaguchi, T., Gu, X. & Reinecker, H.C. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 118, 1001-1011 (2000).
52. Andoh, A. et al. IL-17 selectively down-regulates TNF-alpha-induced RANTES gene expression in human colonic subepithelial myofibroblasts. J Immunol 169, 1683-1687 (2002).
53. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203, 2271-2279 (2006).
54. Chen, L. et al. Lactobacillus acidophilus suppresses colitis-associated activation of the IL-23/Th17 axis. J Immunol Res 2015, 909514 (2015).
55. Yamamoto, S. & Ma, X. Role of Nod2 in the development of Crohn's disease. Microbes Infect 11, 912-918 (2009).
56. Zhang, Y. et al. Probiotic Mixture Protects Dextran Sulfate Sodium-Induced Colitis by Altering Tight Junction Protein Expressions and Increasing Tregs. Mediators of Inflammation 2018, 9416391 (2018).
57. Foligne, B. et al. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol 13, 236-243 (2007).
58. Foligne, B. et al. Recommendations for improved use of the murine TNBS-induced colitis model in evaluating anti-inflammatory properties of lactic acid bacteria: technical and microbiological aspects. Dig. Dis. Sci. 51, 394-404 (2006).
59. Wallace, J.L., MacNaughton, W.K., Morris, G.P. & Beck, P.L. Inhibition of leukotriene synthesis markedly accelerates healing in a rat model of inflammatory bowel disease. Gastroenterology 96, 29-36. (1989).
60. Hrdý, J. et al. Cytokine expression in cord blood cells of children of healthy and allergic mothers. Folia Microbiol (Praha) 55, 515-519 (2010).
61. Halim, T.Y.F. & Takei, F. Isolation and Characterization of Mouse Innate Lymphoid Cells. Current Protocols in Immunology 106, 3.25.21-23.25.13 (2014).