The fabrication and luminescent properties of novel Na2YMg2V3O12:Eu3+ phosphors produced by conventional solid-state reactions were investigated. Self-activated emission of the Na2YMg2V3O12 host produces a broad emission band ranging from 400 to 700 nm with a maximum peak at 530 nm, ascribed to the charge transfer in the (VO4)3− groups. Excitation with near-UV (365 nm) light causes the Na2YMg2V3O12:Eu3+ phosphors to emit bright red light, including both the broad emission band of the (VO4)3− groups and the sharp emission peaks of Eu3+ ions. At a quenching concentration of 0.03 mol, the Eu3+ ion emission peaks were located at 597, 613, 654 and 710 nm. As-prepared Na2YMg2V3O12:Eu3+ phosphors also exhibited stable emission at high temperatures. Furthermore, a designed and packaged white-light-emitting diode (WLED) lamp, including the obtained phosphors, commercial (Ba,Sr)2SiO4:Eu2+ green phosphors, BaMgAl10O17:Eu2+ blue phosphors and a near-ultraviolet (n-UV) chip, emitted bright white light with a good chromaticity coordinate of (0.3068, 0.3491), a satisfactory colour rendering index of 88.20 and a properly correlated colour temperature of 4460.52 K. These results indicate the potential of this Na2YMg2V3O12:Eu3+ phosphor as a red-emitting phosphor for solid-state illumination.