1. Wallenius, V. et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 8, 75–9 (2002).
2. Timper, K. et al. IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling. Cell Rep. 19, 267–280 (2017).
3. Kim, K. W. et al. FOXO1 in the ventromedial hypothalamus regulates energy balance. J. Clin. Invest. 122, 2578–89 (2012).
4. Shiuchi, T. et al. Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 10, 466–80 (2009).
5. Gavini, C. K., Jones, W. C. & Novak, C. M. Ventromedial hypothalamic melanocortin receptor activation: regulation of activity energy expenditure and skeletal muscle thermogenesis. J. Physiol. 594, 5285–5301 (2016).
6. Minokoshi, Y. et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–43 (2002).
7. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
8. Andreux, P. A. et al. Systems Genetics of Metabolism: The Use of the BXD Murine Reference Panel for Multiscalar Integration of Traits. Cell 150, 1287–1299 (2012).
9. Shiuchi, T. et al. Hypothalamic Orexin Stimulates Feeding-Associated Glucose Utilization in Skeletal Muscle via Sympathetic Nervous System. Cell Metab. 10, 466–480 (2009).
10. Fujikawa, T. et al. SF-1 expression in the hypothalamus is required for beneficial metabolic effects of exercise. Elife 5, (2016).
11. Toda, C. et al. Extracellular signal-regulated kinase in the ventromedial hypothalamus mediates leptin-induced glucose uptake in red-type skeletal muscle. Diabetes 62, 2295–307 (2013).
12. Strickland, J. et al. Interleukin-6 increases the expression of key proteins associated with steroidogenesis in human NCI-H295R adrenocortical cells. Steroids 119, 1–17 (2017).
13. Fang, X. X., Jiang, X. L., Han, X. H., Peng, Y. P. & Qiu, Y. H. Neuroprotection of interleukin-6 against NMDA-induced neurotoxicity is mediated by JAK/STAT3, MAPK/ERK, and PI3K/AKT signaling pathways. Cell. Mol. Neurobiol. 33, 241–251 (2013).
14. Rahmouni, K., Sigmund, C. D., Haynes, W. G. & Mark, A. L. Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 58, 536–542 (2009).
15. Tanida, M. et al. Hypothalamic nesfatin-1 stimulates sympathetic nerve activity via hypothalamic ERK signaling. Diabetes 64, 3725–3736 (2015).
16. Jankord, R. et al. Stress activation of IL-6 neurons in the hypothalamus. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 299, (2010).
17. Bongartz, H., Seiß, E. A., Bock, J. & Schaper, F. Glucocorticoids attenuate interleukin-6-induced c-Fos and Egr1 expression and impair neuritogenesis in PC12 cells. J. Neurochem. 157, 532–549 (2021).
18. Cha, S. H., Hu, Z., Chohnan, S. & Lane, M. D. Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle. Proc. Natl. Acad. Sci. U. S. A. 102, 14557–14562 (2005).
19. Kimber, N. E., Cameron-Smith, D., McGee, S. L. & Hargreaves, M. Skeletal muscle fat metabolism after exercise in humans: Influence of fat availability. J. Appl. Physiol. 114, 1577–1585 (2013).
20. Henderson, G. C. & Alderman, B. L. Determinants of resting lipid oxidation in response to a prior bout of endurance exercise. J. Appl. Physiol. 116, 95–103 (2014).
21. Malatesta, D., Werlen, C., Bulfaro, S., Chenevière, X. & Borrani, F. Effect of high-intensity interval exercise on lipid oxidation during postexercise recovery. Med. Sci. Sports Exerc. 41, 364–374 (2009).
22. Nadermann, N. & Volkoff, H. Effects of short-term exercise on food intake and the expression of appetite-regulating factors in goldfish. Peptides 123, 170182 (2020).
23. Ropelle, E. R. et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKβ and ER stress inhibition. PLoS Biol. 8, (2010).
24. Nybo, L., Nielsen, B., Pedersen, B. K., Møller, K. & Secher, N. H. Interleukin-6 release from the human brain during prolonged exercise. J. Physiol. 542, 991–5 (2002).
25. Liu, X., Niu, Y., Yuan, H., Huang, J. & Fu, L. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism. 64, 658–665 (2015).
26. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).
27. Pauli, J. R. et al. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats. J. Physiol. 586, (2008).
28. Kjøbsted, R. et al. Intact regulation of the AMPK signaling network in response to exercise and insulin in skeletal muscle of male patients with type 2 diabetes: Illumination of AMPK activation in recovery from exercise. Diabetes 65, 1219–1230 (2016).
29. Norrbom, J. et al. Alternative splice variant PGC-1α-b is strongly induced by exercise in human skeletal muscle. Am. J. Physiol. - Endocrinol. Metab. 301, (2011).
30. Lee-Young, R. S. et al. Carbohydrate ingestion does not alter skeletal muscle AMPK signaling during exercise in humans. Am. J. Physiol. - Endocrinol. Metab. 291, (2006).