1. Yoo JJ, Seo G, Chua MR, Park TG, Lu Y, Rotermund F, et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590(7847): 587-593.
2. Liu Z, Qiu L, Ono LK, He S, Hu Z, Jiang M, et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 2020, 5(8): 596-604.
3. Park B-w, Kwon HW, Lee Y, Lee DY, Kim MG, Kim G, et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 2021, 6(4): 419-428.
4. Li Z, Klein TR, Kim DH, Yang M, Berry JJ, van Hest MFAM, et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 2018, 3(4): 18017.
5. Werner J, Boyd CC, Moot T, Wolf EJ, France RM, Johnson SA, et al. Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy Environ. Sci. 2020, 13(10): 3393-3403.
6. Lee SW, Bae S, Kim D, Lee HS. Historical Analysis of High-Efficiency, Large-Area Solar Cells: Toward Upscaling of Perovskite Solar Cells. Adv. Mater. 2020, 32(51): 2002202.
7. Peng J, Walter D, Ren Y, Tebyetekerwa M, Wu Y, Duong T, et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 2021, 371(6527): 390-395.
8. Stolterfoht M, Wolff CM, Amir Y, Paulke A, Perdigón-Toro L, Caprioglio P, et al. Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ. Sci. 2017, 10(6): 1530-1539.
9. Kim DH, Whitaker JB, Li Z, van Hest MFAM, Zhu K. Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology. Joule 2018, 2(8): 1437-1451.
10. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 2019, 13(7): 460-466.
11. Kim M, Choi I-w, Choi SJ, Song JW, Mo S-I, An J-H, et al. Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule 2021, 5(3): 659-672.
12. Kim G, Min H, Lee KS, Lee DY, Yoon SM, Seok SI. Impact of strain relaxation on performance of alpha-formamidinium lead iodide perovskite solar cells. Science 2020, 370(6512): 108-112.
13. Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photon. 2014, 8(3): 250-255.
14. Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 2014, 14(2): 1000-1004.
15. Yang Z, Yang W, Yang X, Greer JC, Sheng J, Yan B, et al. Device physics of back-contact perovskite solar cells. Energy Environ. Sci. 2020, 13(6): 1753-1765.
16. Wang Y, Yue Y, Yang X, Han L. Toward Long-Term Stable and Highly Efficient Perovskite Solar Cells via Effective Charge Transporting Materials. Adv. Energy Mater. 2018, 8(22): 1800249.
17. Shahvaranfard F, Altomare M, Hou Y, Hejazi S, Meng W, Osuagwu B, et al. Engineering of the Electron Transport Layer/Perovskite Interface in Solar Cells Designed on TiO2 Rutile Nanorods. Adv. Funct. Mater. 2020, 30(10): 1909738.
18. Giordano F, Abate A, Correa Baena JP, Saliba M, Matsui T, Im SH, et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat Commun. 2016, 7: 10379.
19. Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, et al. Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345(6196): 542-546.
20. Peng J, Duong T, Zhou X, Shen H, Wu Y, Mulmudi HK, et al. Efficient Indium-Doped TiOx Electron Transport Layers for High-Performance Perovskite Solar Cells and Perovskite-Silicon Tandems. Adv. Energy Mater. 2017, 7(4): 1601768.
21. Chen J, Tao HB, Liu B. Unraveling the Intrinsic Structures that Influence the Transport of Charges in TiO2 Electrodes. Adv. Energy Mater. 2017, 7(23): 1700886.
22. Tan H, Jain A, Voznyy O, Lan X, Garcia de Arquer FP, Fan JZ, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355(6326): 722-726.
23. Luo J, Chen J, Wu B, Goh TW, Qiao W, Ku Z, et al. Surface Rutilization of Anatase TiO2 for Efficient Electron Extraction and Stable P max Output of Perovskite Solar Cells. Chem 2018, 4(4): 911-923.
24. Geng W, Tong CJ, Liu J, Zhu W, Lau WM, Liu LM. Structures and Electronic Properties of Different CH3NH3PbI3/TiO2 Interface: A First-Principles Study. Sci. Rep. 2016, 6: 20131.
25. Biccari F, Gabelloni F, Burzi E, Gurioli M, Pescetelli S, Agresti A, et al. Graphene-Based Electron Transport Layers in Perovskite Solar Cells: A Step-Up for an Efficient Carrier Collection. Adv. Energy Mater. 2017, 7(22): 1701349.
26. Noel NK, Habisreutinger SN, Wenger B, Lin YH, Zhang F, Patel JB, et al. Elucidating the Role of a Tetrafluoroborate‐Based Ionic Liquid at the n-Type Oxide/Perovskite Interface. Adv. Energy Mater. 2019, 10(4): 1903231.
27. Xiaobo C, S. MS. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107(7): 2891–2959.
28. Ding Y, Zhang T, Liu C, Yang Y, Pan J, Yao J, et al. Shape-controlled synthesis of single-crystalline anatase TiO2 micro/nanoarchitectures for efficient dye-sensitized solar cells. Sustain. Energy Fuels 2017, 1(3): 520-528.
29. Gloter A, Ewels C, Umek P, Arcon D, Colliex C. Electronic structure of titania-based nanotubes investigated by EELS spectroscopy. Phys. Rev. B 2009, 80(3): 035413.
30. Mosconi E, Ronca E, De Angelis F. First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine. J. Phys. Chem. Lett. 2014, 5(15): 2619-2625.
31. Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2016, 2(1): 16177.
32. Klasen A, Baumli P, Sheng Q, Johannes E, Bretschneider SA, Hermes IM, et al. Removal of Surface Oxygen Vacancies Increases Conductance Through TiO2 Thin Films for Perovskite Solar Cells. J. Phys. Chem. C 2019, 123(22): 13458-13466.
33. Gratia P, Grancini G, Audinot JN, Jeanbourquin X, Mosconi E, Zimmermann I, et al. Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138(49): 15821-15824.
34. Shi J, Gao Y, Gao X, Zhang Y, Zhang J, Jing X, et al. Fluorinated Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells with over 17% Power Conversion Efficiency and Improved Stability. Adv. Mater. 2019, 31(37): 1901673.
35. Le Corre VM, Sherkar TS, Koopmans M, Koster LJA. Identification of the dominant recombination process for perovskite solar cells based on machine learning. Cell Rep. Phys. Sci. 2021, 2(2): 100346.
36. Park N-G, Zhu K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 2020, 5(5): 333-350.
37. Tress W. Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit - Insights Into a Success Story of High Open-Circuit Voltage and Low Recombination. Adv. Energy Mater. 2017, 7(14): 1602358.
38. Gong X, Sun Q, Liu S, Liao P, Shen Y, Gratzel C, et al. Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials. Nano Lett. 2018, 18(6): 3969-3977.
39. Lin PY, Wu T, Ahmadi M, Liu L, Haacke S, Guo TF, et al. Simultaneously enhancing dissociation and suppressing recombination in perovskite solar cells. Nano Energy 2017, 36: 95-101.
40. Qiu L, He S, Ono LK, Liu S, Qi Y. Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Lett. 2019, 4(9): 2147-2167.
41. Ding B, Huang S-Y, Chu Q-Q, Li Y, Li C-X, Li C-J, et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A 2018, 6(22): 10233-10242.
42. Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4: 2885.
43. Boyd CC, Cheacharoen R, Leijtens T, McGehee MD. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 2019, 119(5): 3418-3451.
44. Zhang F, Ullrich F, Silver S, Kerner RA, Rand BP, Kahn A. Complexities of Contact Potential Difference Measurements on Metal Halide Perovskite Surfaces. J. Phys. Chem. Lett. 2019, 10(4): 890-896.