Ultrasonic driven instruments can change the surface characteristics of titanium implants either in terms of surface roughness or in terms of residual particles from the instrument tips’ material. The present study assessed such changes induced by tips made of different materials on discs with implant surfaces of different roughness.
While tips of hard instruments like steel and titanium and – to a lower degree – PEEK changed the surface roughness in terms of a flattening of moderately rough surfaces and roughening of machined surfaces, soft tip materials like carbon, resin and - to a lower degree - PEEK, tended to leave abraded material on moderately rough surfaces and the surface without pre-treatment, but not on the machined surface.
Therefore, both aspects of our null hypothesis were rejected.
Combining the findings from the different assessment methods, ie. SEM imaging and contact profilometry, both techniques indicate in accordance: Originally moderately rough surfaces, Inicell® and SLA®, lost their typical surface characteristics due to the instrumentation with steel, titanium and PEEK, while the surrogate parameters Rx, Rz and Rt decreased significantly. On the other hand, the machined surface with a low roughness as measured in the direction of the striation caused by the machining process, reached the same roughness as the formerly moderately rough surfaces after instrumentation by the same tips. In this regard it is important to note, that the Rz values measured on the pristine implant surfaces are in accordance with the values published so far [22–25].
Regarding the change of roughness, the different surrogate parameters Ra, Rz and Rt were generally in accordance. That means, that significant changes were found for all parameters in the same experiments, indicating that mean deviation, maximum height and the range of the profile were changed in the same way. This finding reflects that no tip left behind a surface that was characterized by especially deep scratches. The only respective exception was the change of Rz (but not Rt and Ra) on the Thommen surface without pretreatment (III) after instrumentation with carbon, and the change on the machined surface (IV) treated with titanium tips for Ra (but not Rt and Rz). Therefore, few accented carbon particles that were detected by the contact profilometer might serve as an explanation of the above case. For the machined surface the different values for the surrogate parameters indicate an extremely homogenous – though roughened - surface after instrumentation by titanium.
The moderately rough surface however, though not changing the surrogate parameters significantly due to instrumentation, optically displayed quite a similar appearance in the SEM images like the before-mentioned surfaces after instrumentation. These findings are in line with previous studies aiming to assess the effect of ultrasonic driven steel tips on implant surfaces [24, 25].
Likewise, the findings of the SEM images are reflected by the EDX analysis: Soft tips like PEEK, carbon and especially resin left considerable amounts of abraded material on the rough titanium surfaces. Element analysis revealed that the composition of the residuals complies with the respective tip materials, which were assessed in a pre-study EDX assessment (see Table 1, right column). High levels of Al on the pristine Thommen surfaces might be explainable due to the packaging, since the discs were shipped wrapped in aluminium foil.
Since the aim of the study was the simulation of the clinical situation, instrument settings regarding the intensity (“power settings”) were adjusted according to the manufacturers’ guidelines. Thus, the analysis regarding roughness surrogate parameters, optical assessment of the tips and SEM imaging and EDX analysis do not allow for a direct comparison of the single experiments, i.e. discs and tip materials. However, the outcomes reflect a comparison of the potential changes caused by different systems in the way they are clinically used for implant debridement. Even though the absolute pressure was accurately set to 100 g before the experiment started, differences regarding the relative pressure of the tip on the titanium surface must be considered for two reasons: First, since the different tips differ in size of the pristine tips. Also, tips of soft materials abraded much more which would have quickly resulted in a greater contact area between tip and implant surface. Both observations have a direct impact on the relative contact pressure though the total load on the tips was standardized.
To estimate and compare possible negative effects of either changed surface roughness or remnants from tip material is difficult, since corresponding data from clinical studies are still missing. Changing moderately rough surfaces means to drive down the surface wettability and - contemporaneously – the biocompatibility of the surfaces [26–28]. Which means a decisive disadvantage for bone healing, however, may be an advantage if surfaces remain exposed to the oral flora, where smoother surfaces are less prone to biofilm adhesion [29–31]. Of course, the same principle is valid for the opposite: Roughening rather smooth surfaces like machined surfaces might facilitate biofilm adhesion. Since this kind of surface is used in the implants’ neck area, this issue is of special importance: Treating the area close to the so-called emergence profile with ultrasonic tips of hard materials such as steel or titanium might therefor abet the occurrence of mucositis as a direct reaction of biofilm accumulation. Moreover, particles of the titanium surface, which are displaced into the adjacent peri-implant mucosa by instrumentation with tips from hard materials have been reported to favor a detrimental shift in the adjacent biofilm [32] and aggravate peri-implant inflammation [33].
Using soft tip materials, considerable amounts of debris were found on the rough implant surfaces. According to the EDX analysis, the elemental composition of these coincides with the material of the respective tips. Though so far no impairing effect of such residuals has been clinically proven and the material itself is not toxic, a concept that would replace biofilm contamination by remnants from foreign material on the surface is not plausible. The smooth implant surfaces, however, were less affected by residual particles. Therefore, the use of such tips made from softer materials like resin or carbon on machined areas – typically located at the implants’ neck – seems rather unproblematic.
Translating the meaning of findings of the present in-vitro study for the clinical situation, some limitations of the present design have to be considered:
First, no screw-shaped implants but discs with the respective surfaces have been used in order to standardize both instrumentation and assessment of the surfaces. Cylindrical implant geometry and threads however constitute surface features that might change the assumptions with regard to homogeneous flattening and abrasion considerably. Then, the present study provides no data regarding whether and to which extent biofilm removal from the surfaces is possible with the respective ultrasonic driven tips. Previous studies, however, showed that biofilm removal is basically possible with ultrasonic tips [34] and that ultrasonic debridement may be part of a clinically successful mucositis treatment [35]. Ronay et al. revealed, however, in a series of vitro-studies that ultrasonic debridement even with steel tips is heavily limited especially in tight peri-implant defects on one hand and in the area under the threads of screw-shaped implants on the other hand [36, 37]. Furthermore it should be considered that biofilm colonization itself might influence the abrasion process on the rough surfaces.
Another limitation of the present study is the settings of the EDX assessment. Element analysis was not performed over the entire treated area. The respective scan would have needed weeks of processing time with the device used in the current experiment. Instead, EDX was performed in 5 measuring points on each instrumented and pristine implant surface. The analysis does therefore not depict a “true” distribution of the mean of different elements’ volume percentage on the surface, but an estimate based on numerous spots that were – however - determined by a standardized protocol. This is the reason why the EDX results were not tested for significant differences.