1. Cancer Stat Facts: Brain and Other Nervous System Cancer. https://seer.cancer.gov/statfacts/html/brain.html Accessed.
2. Brain Tumor: Statistics. https://www.cancer.net/cancer-types/brain-tumor/statistics Accessed.
3. Glioblastoma Multiforme.
4. Pallavicini G, Berto GE, Di Cunto F. Precision Revisited: Targeting Microcephaly Kinases in Brain Tumors. Int J Mol Sci. 2019;20(9). doi: 10.3390/ijms20092098.
5. Salcman M. Surgical resection of malignant brain tumors: who benefits? Oncology (Williston Park). 1988;2(8):47-56, 9-60, 3.
6. Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, Vazquez-Ramos C, Mahato D, Tavanaiepour D, et al. Advances in Brain Tumor Surgery for Glioblastoma in Adults. Brain Sci. 2017;7(12). doi: 10.3390/brainsci7120166.
7. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3:iii93-101. doi: 10.1093/annonc/mdu050.
8. Perry JR, Laperriere N, O'Callaghan CJ, Brandes AA, Menten J, Phillips C, et al. Short-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma. N Engl J Med. 2017;376(11):1027-37. doi: 10.1056/NEJMoa1611977.
9. Kotecha R, Gondi V, Ahluwalia MS, Brastianos PK, Mehta MP. Recent advances in managing brain metastasis. F1000Res. 2018;7. doi: 10.12688/f1000research.15903.1.
10. Mercadante V, Al Hamad A, Lodi G, Porter S, Fedele S. Interventions for the management of radiotherapy-induced xerostomia and hyposalivation: A systematic review and meta-analysis. Oral Oncol. 2017;66:64-74. doi: 10.1016/j.oraloncology.2016.12.031.
11. Brown PD, Ahluwalia MS, Khan OH, Asher AL, Wefel JS, Gondi V. Whole-Brain Radiotherapy for Brain Metastases: Evolution or Revolution? J Clin Oncol. 2018;36(5):483-91. doi: 10.1200/jco.2017.75.9589.
12. Ikonomidou C. Chemotherapy and the pediatric brain. Molecular and Cellular Pediatrics. 2018;5(1):8. doi: 10.1186/s40348-018-0087-0.
13. Eide S, Feng ZP. Doxorubicin chemotherapy-induced "chemo-brain": Meta-analysis. Eur J Pharmacol. 2020;881:173078. doi: 10.1016/j.ejphar.2020.173078.
14. Makwana V, Karanjia J, Haselhorst T, Anoopkumar-Dukie S, Rudrawar S. Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization. Int J Pharm. 2021;593:120117. doi: 10.1016/j.ijpharm.2020.120117.
15. Pugazhendhi A, Edison T, Velmurugan BK, Jacob JA, Karuppusamy I. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci. 2018;200:26-30. doi: 10.1016/j.lfs.2018.03.023.
16. O'Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440-9. doi: 10.1093/annonc/mdh097.
17. Yamaguchi N, Fujii T, Aoi S, Kozuch PS, Hortobagyi GN, Blum RH. Comparison of cardiac events associated with liposomal doxorubicin, epirubicin and doxorubicin in breast cancer: a Bayesian network meta-analysis. Eur J Cancer. 2015;51(16):2314-20. doi: 10.1016/j.ejca.2015.07.031.
18. Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Cancer Nanomedicine. ACS Nano. 2017;11(10):9594-613. doi: 10.1021/acsnano.7b04855.
19. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463-78. doi: 10.1016/s0163-7827(03)00033-x.
20. Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: a new Frontier in cancer chemotherapy. J Chemother. 2004;16 Suppl 4:94-7. doi: 10.1179/joc.2004.16.Supplement-1.94.
21. Mahendra A, James HP, Jadhav S. PEG-grafted phospholipids in vesicles: Effect of PEG chain length and concentration on mechanical properties. Chem Phys Lipids. 2019;218:47-56. doi: 10.1016/j.chemphyslip.2018.12.001.
22. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136-51. doi: 10.1016/j.addr.2010.04.009.
23. Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, et al. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17-38. doi: 10.1016/j.addr.2018.07.007.
24. Ferraris C, Cavalli R, Panciani PP, Battaglia L. Overcoming the Blood-Brain Barrier: Successes and Challenges in Developing Nanoparticle-Mediated Drug Delivery Systems for the Treatment of Brain Tumours. Int J Nanomedicine. 2020;15:2999-3022. doi: 10.2147/ijn.S231479.
25. Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, et al. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int J Nanomedicine. 2020;15:2563-82. doi: 10.2147/ijn.S243223.
26. Boyd BJ, Galle A, Daglas M, Rosenfeld JV, Medcalf R. Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect. J Drug Target. 2015;23(9):847-53. doi: 10.3109/1061186x.2015.1034280.
27. Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86-98. doi: 10.1602/neurorx.2.1.86.
28. Greene C, Campbell M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers. 2016;4(1):e1138017. doi: 10.1080/21688370.2015.1138017.
29. Almutairi MM, Gong C, Xu YG, Chang Y, Shi H. Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci. 2016;73(1):57-77. doi: 10.1007/s00018-015-2050-8.
30. Villaseñor R, Lampe J, Schwaninger M, Collin L. Intracellular transport and regulation of transcytosis across the blood-brain barrier. Cell Mol Life Sci. 2019;76(6):1081-92. doi: 10.1007/s00018-018-2982-x.
31. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron. 2014;82(3):603-17. doi: 10.1016/j.neuron.2014.03.003.
32. Mathiesen Janiurek M, Soylu-Kucharz R, Christoffersen C, Kucharz K, Lauritzen M. Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis. Elife. 2019;8. doi: 10.7554/eLife.49405.
33. Stukel JM, Caplan MR. Targeted drug delivery for treatment and imaging of glioblastoma multiforme. Expert Opin Drug Deliv. 2009;6(7):705-18. doi: 10.1517/17425240902988470.
34. Ayloo S, Gu C. Transcytosis at the blood-brain barrier. Curr Opin Neurobiol. 2019;57:32-8. doi: 10.1016/j.conb.2018.12.014.
35. Zlokovic BV, Mackic JB, McComb JG, Weiss MH, Kaplowitz N, Kannan R. Evidence for transcapillary transport of reduced glutathione in vascular perfused guinea-pig brain. Biochem Biophys Res Commun. 1994;201(1):402-8. doi: 10.1006/bbrc.1994.1715.
36. Aoyama K, Wang F, Matsumura N, Kiyonari H, Shioi G, Tanaka K, et al. Increased neuronal glutathione and neuroprotection in GTRAP3-18-deficient mice. Neurobiol Dis. 2012;45(3):973-82. doi: 10.1016/j.nbd.2011.12.016.
37. Lee KH, Cha M, Lee BH. Neuroprotective Effect of Antioxidants in the Brain. Int J Mol Sci. 2020;21(19). doi: 10.3390/ijms21197152.
38. Kannan R, Chakrabarti R, Tang D, Kim KJ, Kaplowitz N. GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res. 2000;852(2):374-82. doi: 10.1016/s0006-8993(99)02184-8.
39. Kannan R, Kuhlenkamp JF, Jeandidier E, Trinh H, Ookhtens M, Kaplowitz N. Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat. J Clin Invest. 1990;85(6):2009-13. doi: 10.1172/jci114666.
40. Kannan R, Mittur A, Bao Y, Tsuruo T, Kaplowitz N. GSH transport in immortalized mouse brain endothelial cells: evidence for apical localization of a sodium-dependent GSH transporter. J Neurochem. 1999;73(1):390-9. doi: 10.1046/j.1471-4159.1999.0730390.x.
41. An Open-label, Phase I/IIa, Dose Escalating Study of 2B3-101 in Patients With Solid Tumors and Brain Metastases or Recurrent Malignant Glioma. https://clinicaltrials.gov/ct2/show/NCT01386580 Accessed.
42. Clinical and Pharmacological Study With 2B3-101 in Patients With Breast Cancer and Leptomeningeal Metastases. https://clinicaltrials.gov/ct2/show/NCT01818713 Accessed.
43. 2B3-101 (GSH-PEG liposomal doxorubicin, now 2X-111 at Oncology Venture A/S) for brain metastases and recurrent malignant glioma has completed a Phase I/IIa clinical trial. https://www.2-bbb.com/products/2b3-101/ Accessed.
44. Gaillard PJ, Appeldoorn CC, Dorland R, van Kregten J, Manca F, Vugts DJ, et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One. 2014;9(1):e82331. doi: 10.1371/journal.pone.0082331.
45. Birngruber T, Raml R, Gladdines W, Gatschelhofer C, Gander E, Ghosh A, et al. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx,(®)/Doxil(®)--a cerebral open flow microperfusion pilot study. J Pharm Sci. 2014;103(7):1945-8. doi: 10.1002/jps.23994.
46. Maussang D, Rip J, van Kregten J, van den Heuvel A, van der Pol S, van der Boom B, et al. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov Today Technol. 2016;20:59-69. doi: 10.1016/j.ddtec.2016.09.003.
47. Lee DH, Rötger C, Appeldoorn CC, Reijerkerk A, Gladdines W, Gaillard PJ, et al. Glutathione PEGylated liposomal methylprednisolone (2B3-201) attenuates CNS inflammation and degeneration in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014;274(1-2):96-101. doi: 10.1016/j.jneuroim.2014.06.025.
48. Mare R, Paolino D, Celia C, Molinaro R, Fresta M, Cosco D. Post-insertion parameters of PEG-derivatives in phosphocholine-liposomes. Int J Pharm. 2018;552(1-2):414-21. doi: 10.1016/j.ijpharm.2018.10.028.
49. Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013;5(4):542-69. doi: 10.3390/pharmaceutics5040542.
50. Szleifer I, Gerasimov OV, Thompson DH. Spontaneous liposome formation induced by grafted poly(ethylene oxide) layers: theoretical prediction and experimental verification. Proc Natl Acad Sci U S A. 1998;95(3):1032-7. doi: 10.1073/pnas.95.3.1032.
51. Awasthi VD, Garcia D, Klipper R, Goins BA, Phillips WT. Neutral and anionic liposome-encapsulated hemoglobin: effect of postinserted poly(ethylene glycol)-distearoylphosphatidylethanolamine on distribution and circulation kinetics. J Pharmacol Exp Ther. 2004;309(1):241-8. doi: 10.1124/jpet.103.060228.
52. Nakamura K, Yamashita K, Itoh Y, Yoshino K, Nozawa S, Kasukawa H. Comparative studies of polyethylene glycol-modified liposomes prepared using different PEG-modification methods. Biochim Biophys Acta. 2012;1818(11):2801-7. doi: 10.1016/j.bbamem.2012.06.019.
53. Moreira JN, Ishida T, Gaspar R, Allen TM. Use of the post-insertion technique to insert peptide ligands into pre-formed stealth liposomes with retention of binding activity and cytotoxicity. Pharm Res. 2002;19(3):265-9. doi: 10.1023/a:1014434732752.
54. Amiri Darban S, Nikoofal-Sahlabadi S, Amiri N, Kiamanesh N, Mehrabian A, Zendehbad B, et al. Targeting the leptin receptor: To evaluate therapeutic efficacy and anti-tumor effects of Doxil, in vitro and in vivo in mice bearing C26 colon carcinoma tumor. Colloids Surf B Biointerfaces. 2018;164:107-15. doi: 10.1016/j.colsurfb.2018.01.035.
55. Moosavian SA, Abnous K, Akhtari J, Arabi L, Gholamzade Dewin A, Jafari M. 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artif Cells Nanomed Biotechnol. 2018;46(8):2054-65. doi: 10.1080/21691401.2017.1408120.
56. Arabi L, Badiee A, Mosaffa F, Jaafari MR. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J Control Release. 2015;220(Pt A):275-86. doi: 10.1016/j.jconrel.2015.10.044.
57. Lindqvist A, Rip J, van Kregten J, Gaillard PJ, Hammarlund-Udenaes M. In vivo Functional Evaluation of Increased Brain Delivery of the Opioid Peptide DAMGO by Glutathione-PEGylated Liposomes. Pharm Res. 2016;33(1):177-85. doi: 10.1007/s11095-015-1774-3.
58. Gaillard PJ. Case study: to-BBB's G-Technology, getting the best from drug-delivery research with industry-academia partnerships. Ther Deliv. 2011;2(11):1391-4. doi: 10.4155/tde.11.111.
59. Zamani P, Navashenaq JG, Teymouri M, Karimi M, Mashreghi M, Jaafari MR. Combination therapy with liposomal doxorubicin and liposomal vaccine containing E75, an HER-2/neu-derived peptide, reduces myeloid-derived suppressor cells and improved tumor therapy. Life Sci. 2020;252:117646. doi: 10.1016/j.lfs.2020.117646.
60. Schelté P, Boeckler C, Frisch B, Schuber F. Differential reactivity of maleimide and bromoacetyl functions with thiols: application to the preparation of liposomal diepitope constructs. Bioconjug Chem. 2000;11(1):118-23. doi: 10.1021/bc990122k.
61. Kirpotin D, Park JW, Hong K, Zalipsky S, Li WL, Carter P, et al. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry. 1997;36(1):66-75. doi: 10.1021/bi962148u.
62. Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem. 1959;234(3):466-8.
63. Korani M, Nikoofal-Sahlabadi S, Nikpoor AR, Ghaffari S, Attar H, Mashreghi M, et al. The Effect of Phase Transition Temperature on Therapeutic Efficacy of Liposomal Bortezomib. Anticancer Agents Med Chem. 2020;20(6):700-8. doi: 10.2174/1871520620666200101150640.
64. Yoshida T, Lai TC, Kwon GS, Sako K. pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv. 2013;10(11):1497-513. doi: 10.1517/17425247.2013.821978.
65. Korani M, Ghaffari S, Attar H, Mashreghi M, Jaafari MR. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomedicine: Nanotechnology, Biology and Medicine. 2019;20:102013.
66. Swenson CE, Perkins WR, Roberts P, Janoff AS. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). The Breast. 2001;10:1-7. doi: https://doi.org/10.1016/S0960-9776(01)80001-1.
67. Shah NN, Merchant MS, Cole DE, Jayaprakash N, Bernstein D, Delbrook C, et al. Vincristine Sulfate Liposomes Injection (VSLI, Marqibo®): Results From a Phase I Study in Children, Adolescents, and Young Adults With Refractory Solid Tumors or Leukemias. Pediatr Blood Cancer. 2016;63(6):997-1005. doi: 10.1002/pbc.25937.
68. Batist G, Barton J, Chaikin P, Swenson C, Welles L. Myocet (liposome-encapsulated doxorubicin citrate): a new approach in breast cancer therapy. Expert Opin Pharmacother. 2002;3(12):1739-51. doi: 10.1517/14656566.3.12.1739.
69. Zhang L, Cao H, Zhang J, Yang C, Hu T, Li H, et al. Comparative study of (Asp)7-CHOL-modified liposome prepared using pre-insertion and post-insertion methods for bone targeting in vivo. J Drug Target. 2017;25(2):149-55. doi: 10.1080/1061186x.2016.1212201.
70. Uster PS, Allen TM, Daniel BE, Mendez CJ, Newman MS, Zhu GZ. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett. 1996;386(2-3):243-6. doi: 10.1016/0014-5793(96)00452-8.
71. Amin M, Mansourian M, Koning GA, Badiee A, Jaafari MR, Ten Hagen TLM. Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region. J Control Release. 2015;220(Pt A):308-15. doi: 10.1016/j.jconrel.2015.10.039.
72. Lopes de Menezes DE, Pilarski LM, Allen TM. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res. 1998;58(15):3320-30.
73. Ishida T, Iden DL, Allen TM. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett. 1999;460(1):129-33. doi: 10.1016/s0014-5793(99)01320-4.
74. Maruyama K, Mori A, Bhadra S, Subbiah MT, Huang L. Proteins and peptides bound to long-circulating liposomes. Biochim Biophys Acta. 1991;1070(1):246-52. doi: 10.1016/0005-2736(91)90171-4.
75. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018;10(2). doi: 10.3390/pharmaceutics10020057.
76. Torchilin VP, Rammohan R, Weissig V, Levchenko TS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A. 2001;98(15):8786-91. doi: 10.1073/pnas.151247498.
77. Su C, Xia Y, Sun J, Wang N, Zhu L, Chen T, et al. Liposomes physically coated with peptides: preparation and characterization. Langmuir. 2014;30(21):6219-27. doi: 10.1021/la501296r.
78. Allen C, Dos Santos N, Gallagher R, Chiu GN, Shu Y, Li WM, et al. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep. 2002;22(2):225-50. doi: 10.1023/a:1020186505848.
79. Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta. 1991;1070(1):187-92. doi: 10.1016/0005-2736(91)90162-2.
80. Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacol Rev. 2016;68(3):701-87. doi: 10.1124/pr.115.012070.
81. Sur S, Fries AC, Kinzler KW, Zhou S, Vogelstein B. Remote loading of preencapsulated drugs into stealth liposomes. Proc Natl Acad Sci U S A. 2014;111(6):2283-8. doi: 10.1073/pnas.1324135111.
82. Roces CB, Port EC, Daskalakis NN, Watts JA, Aylott JW, Halbert GW, et al. Rapid scale-up and production of active-loaded PEGylated liposomes. Int J Pharm. 2020;586:119566. doi: 10.1016/j.ijpharm.2020.119566.
83. Agency EM: https://www.ema.europa.eu/en/medicines/human/EPAR/myocet-liposomal-previously-myocet Accessed.
84. Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71(3):555-64. doi: 10.1007/s00280-012-2042-4.
85. Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol. 2020;10:739. doi: 10.3389/fonc.2020.00739.
86. Jena L, McErlean E, McCarthy H. Delivery across the blood-brain barrier: nanomedicine for glioblastoma multiforme. Drug Deliv Transl Res. 2020;10(2):304-18. doi: 10.1007/s13346-019-00679-2.
87. Santos AO, da Silva LC, Bimbo LM, de Lima MC, Simões S, Moreira JN. Design of peptide-targeted liposomes containing nucleic acids. Biochim Biophys Acta. 2010;1798(3):433-41. doi: 10.1016/j.bbamem.2009.12.001.
88. Mastrotto F, Brazzale C, Bellato F, De Martin S, Grange G, Mahmoudzadeh M, et al. In Vitro and in Vivo Behavior of Liposomes Decorated with PEGs with Different Chemical Features. Mol Pharm. 2020;17(4):1444. doi: 10.1021/acs.molpharmaceut.0c00149.
89. Shaffer CL. Chapter 4 - Defining Neuropharmacokinetic Parameters in CNS Drug Discovery to Determine Cross-Species Pharmacologic Exposure–Response Relationships. In: Macor JE, editor. Annual Reports in Medicinal Chemistry. Academic Press; 2010. p. 55-70.
90. Shargel L. Applied biopharmaceutics and pharmacokinetics. 7 ed.
91. Paolino D, Accolla ML, Cilurzo F, Cristiano MC, Cosco D, Castelli F, et al. Interaction between PEG lipid and DSPE/DSPC phospholipids: An insight of PEGylation degree and kinetics of de-PEGylation. Colloids Surf B Biointerfaces. 2017;155:266-75. doi: 10.1016/j.colsurfb.2017.04.018.1. Cancer Stat Facts: Brain and Other Nervous System Cancer. https://seer.cancer.gov/statfacts/html/brain.html Accessed.