1 Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506, doi:10.1016/s0140-6736(20)30183-5 (2020).
2 Wang, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 323, 1061-1069, doi:10.1001/jama.2020.1585 (2020).
3 Guan, W.-j. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine 382, 1708-1720, doi:10.1056/NEJMoa2002032 (2020).
4 Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565-574, doi:10.1016/S0140-6736(20)30251-8 (2020).
5 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
6 Kim, J.-M. et al. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong public health and research perspectives 11, 3-7, doi:10.24171/j.phrp.2020.11.1.02 (2020).
7 Wuhan Coronavirus (2019-nCoV) Global Cases (by Johns Hopkins CSSE). Case Dashboard (2020).
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 [Assessed 15 19 July 2020].
8 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280.e278, doi:10.1016/j.cell.2020.02.052 (2020).
9 Imai, Y. et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436, 112-116, doi:10.1038/nature03712 (2005).
10 Kuba, K. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11, 875-879, doi:10.1038/nm1267 (2005).
11 Ishiyama, Y. et al. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension 43, 970-976, doi:10.1161/01.HYP.0000124667.34652.1a (2004).
12 Klimas, J. et al. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats. J Cell Mol Med 19, 1965-1974, doi:10.1111/jcmm.12573 (2015).
13 Gurwitz, D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res, doi:10.1002/ddr.21656 (2020).
14 Mancia, G., Rea, F., Ludergnani, M., Apolone, G. & Corrao, G. Renin-Angiotensin-Aldosterone System Blockers and the Risk of Covid-19. N Engl J Med 382, 2431-2440, doi:10.1056/NEJMoa2006923 (2020).
15 Reynolds, H. R. et al. Renin-Angiotensin-Aldosterone System Inhibitors and Risk of Covid-19. N Engl J Med 382, 2441-2448, doi:10.1056/NEJMoa2008975 (2020).
16 Li, J., Wang, X., Chen, J., Zhang, H. & Deng, A. Association of Renin-Angiotensin System Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol 5, 1-6, doi:10.1001/jamacardio.2020.1624 (2020).
17 Guo, X., Zhu, Y. & Hong, Y. Decreased Mortality of COVID-19 With Renin-Angiotensin-Aldosterone System Inhibitors Therapy in Patients With Hypertension: A Meta-Analysis. Hypertension 76, e13-e14, doi:10.1161/hypertensionaha.120.15572 (2020).
18 Pranata, R. et al. The use of renin angiotensin system inhibitor on mortality in patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Diabetes Metab Syndr 14, 983-990, doi:10.1016/j.dsx.2020.06.047 (2020).
19 Greco, A. et al. Outcomes of renin-angiotensin-aldosterone system blockers in patients with COVID-19: a systematic review and meta-analysis. Eur Heart J Cardiovasc Pharmacother, doi:10.1093/ehjcvp/pvaa074 (2020).
20 Pirola, C. J. & Sookoian, S. Estimation of Renin-Angiotensin-Aldosterone-System (RAAS)-Inhibitor effect on COVID-19 outcome: A Meta-analysis. J Infect 81, 276-281, doi:10.1016/j.jinf.2020.05.052 (2020).
21 Liabeuf, S. et al. Association between renin-angiotensin system inhibitors and COVID-19 complications. Eur Heart J Cardiovasc Pharmacother, doi:10.1093/ehjcvp/pvaa062 (2020).
22 Richardson, S. et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 323, 2052-2059, doi:10.1001/jama.2020.6775 (2020).
23 Jung, S. Y., Choi, J. C., You, S. H. & Kim, W. Y. Association of renin-angiotensin-aldosterone system inhibitors with COVID-19-related outcomes in Korea: a nationwide population-based cohort study. Clin Infect Dis, doi:10.1093/cid/ciaa624 (2020).
24 Cao, Y. et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 6, 11, doi:10.1038/s41421-020-0147-1 (2020).
25 Yang, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8, 475-481, doi:10.1016/s2213-2600(20)30079-5 (2020).
26 Wu, C. et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 180, 1-11, doi:10.1001/jamainternmed.2020.0994 (2020).
27 Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054-1062, doi:10.1016/s0140-6736(20)30566-3 (2020).
28 Lim, J. H. et al. Fatal Outcomes of COVID-19 in Patients with Severe Acute Kidney Injury. J Clin Med 9, doi:10.3390/jcm9061718 (2020).
29 Fisher, M. et al. AKI in Hospitalized Patients with and without COVID-19: A Comparison Study. J Am Soc Nephrol, doi:10.1681/asn.2020040509 (2020).
30 Fominskiy, E. V. et al. Prevalence, Characteristics, Risk Factors, and Outcomes of Invasively Ventilated COVID-19 Patients with Acute Kidney Injury and Renal Replacement Therapy. Blood Purif, 1-8, doi:10.1159/000508657 (2020).
31 Hirsch, J. S. et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int 98, 209-218, doi:10.1016/j.kint.2020.05.006 (2020).
32 Chung, S. M. et al. The Risk of Diabetes on Clinical Outcomes in Patients with Coronavirus Disease 2019: A Retrospective Cohort Study. Diabetes Metab J 44, 405-413, doi:10.4093/dmj.2020.0105 (2020).
33 Oussalah, A. et al. Long-Term ACE Inhibitor/ARB Use Is Associated with Severe Renal Dysfunction and Acute Kidney Injury in Patients with severe COVID-19: Results from a Referral Center Cohort in the North East of France. Clin Infect Dis, doi:10.1093/cid/ciaa677 (2020).
34 Mizuiri, S. & Ohashi, Y. ACE and ACE2 in kidney disease. World J Nephrol 4, 74-82, doi:10.5527/wjn.v4.i1.74 (2015).
35 Lam, K. W. et al. Continued in-hospital ACE inhibitor and ARB Use in hypertensive COVID-19 patients is associated with positive clinical outcomes. J Infect Dis, doi:10.1093/infdis/jiaa447 (2020).
36 Sommerstein, R., Kochen, M. M., Messerli, F. H. & Gräni, C. Coronavirus Disease 2019 (COVID-19): Do Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers Have a Biphasic Effect? J Am Heart Assoc 9, e016509, doi:10.1161/jaha.120.016509 (2020).
37 Kim, S.-W., Lee, K. S., Kim, K., Lee, J. J. & Kim, J.-y. A Brief Telephone Severity Scoring System and Therapeutic Living Centers Solved Acute Hospital-Bed Shortage during the COVID-19 Outbreak in Daegu, Korea. J Korean Med Sci 35 (2020).
38 Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 150, 604-612, doi:10.7326/0003-4819-150-9-200905050-00006 (2009).
39 Wilson, R. F. & Walt, A. J. Management of Trauma: Pitfalls and Practice. (Williams & Wilkins, 1996).
40 Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120, c179-184, doi:10.1159/000339789 (2012).
41 Ranieri, V. M. et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 307, 2526-2533, doi:10.1001/jama.2012.5669 (2012).
42 Smith, G. B., Prytherch, D. R., Meredith, P., Schmidt, P. E. & Featherstone, P. I. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation 84, 465-470, doi:https://doi.org/10.1016/j.resuscitation.2012.12.016 (2013).
43 Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40, 373-383, doi:10.1016/0021-9681(87)90171-8 (1987).