1. Ketko AK, Donn SM (2009) Surfactant-associated proteins: structure, function and clinical implications.Curr Pediatr Rev 10:162-167. https://doi.org/10.2174/157339631130900006
2. Sunde M, Pham CLL, Kwan AH. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins (2017) Annu Rev Biochem 86:585-608.https://doi.org/10.1146/annurev-biochem-061516-044847
3. Beers MF, Wali A, Eckenhoff MF, Feinstein SI, Fisher JH, Fisher AB (1992) An antibody with specificity for surfactant protein C precursors: identification of pro-SP-C in rat lung. Am J Respir Cell Mol Biol 7:368–378. https://doi.org/10.1165/ajrcmb/7.4.368
4. Jeon GW (2019) Surfactant preparations for preterm infants with respiratory distress syndrome: past, present, and future. Korean J Pediatr 62:155–161. https://doi.org/10.3345/kjp.2018.07185
5. Halliday HL (2008) Surfactants: past, present and future. J Perinatol 28 (Suppl1):S47 -56. https://doi.org/10.1038/jp.2008.50
6. Enhörning G, Robertson B (1972) Lung expansion in the premature rabbit fetus after tracheal deposition of surfactant. Pediatrics 50:58–66
7. Jin H, Ciechanowicz AK, Kaplan AR, Wang L, Zhang P-X, Lu Y-C et al (2018) Surfactant protein C dampens inflammation by decreasing JAK/STAT activation during lung repair. Am J Physiol Lung Cell Mol Physiol 314:L882-L892. https://doi.org/10.1152/ajplung.00418.2017
8. Tafel O, Latzin P, Paul K, Winter T, Woischnik M, Griese M (2008) Surfactant proteins SP-B and SP-C and their precursors in bronchoalveolar lavages from children with acute and chronic inflammatory airway disease. BMC Pulm Med 8:6. https://doi.org/10.1186/1471-2466-8-6
9. Venosa A, Katzen J, Tomer Y, Kopp M, Jamil S, Russo SJ et al (2019) Epithelial Expression of an Interstitial Lung Disease-Associated Mutation in Surfactant Protein-C Modulates Recruitment and Activation of Key Myeloid Cell Populations in Mice. J Immunol 202:2760-2771. https://doi.org/10.4049/jimmunol.1900039
10. Brown NJ, Johansson J, Barron AE (2008) Biomimicry of surfactant protein C. Acc Chem Res 41:1409-1417. https://doi.org/10.1021/ar800058t
11. Haagsman HP, Diemel RV (2001) Surfactant-associated proteins: functions and structural variation. Comp Biochem Physiol A Mol Integr Physiol 129:91–108. https://doi.org/10.1016/S1095-6433(01)00308-7
12. Knight SD, Presto J, Linse S, Johansson J (2013) The BRICHOS domain, amyloid fibril formation, and their relationship. Biochemistry 52:7523-7531. https://doi.org/10.1021/bi400908x
13. Cohen SIA, Arosio P, Presto J, Kurudenkandy FR, Biverstal H, Dolfe L et al (2015) A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol 22:207-213. https://doi.org/10.1038/nsmb.2971
14. Peca D, Boldrini R, Johannson J, Shieh JT, Citti A, Petrini S et al (2015) Clinical and ultrastructural spectrum of diffuse lung disease associated with surfactant protein C mutations. Eur J Hum Genet 23:1033-1041. https://doi.org/10.1038/ejhg.2015.45.
15. Schob S, Dieckow J, Fehrenbach M, Peukert N, Weiss A, Kluth D et al (2017) Occurrence and colocalization of surfactant proteins A, B, C and D in the developing and adult rat brain. Ann Anat 210:121-127. https://doi.org/10.1016/j.aanat.2016.10.006
16. Beileke S, Claassen H, Wagner W, Matthies C, Ruf C, Hartmann A et al (2015) Expression and Localization of Lung Surfactant Proteins in Human Testis. PLoS One 10:e0143058. https://doi.org/10.1371/journal.pone.0143058
17. Schob S, Schicht M, Sel S, Stiller D, Kekulé AS, Paulsen F et al. (2013) The detection of surfactant proteins A, B, C and D in the human brain and their regulation in cerebral infarction, autoimmune conditions and infections of the CNS. PLoS One 2013;8:e74412. https://doi.org/10.1371/journal.pone.0074412
18. Krause M, Peukert N, Härtig W, Emmer A, Mahr CV, Richter C et al. Localization, Occurrence, and CSF Changes of SP-G, a New Surface Active Protein with Assumable Immunoregulatory Functions in the CNS. Mol Neurobiol. 2019; 56:2433-2439. https://doi.org/10.1007/s12035-018-1247-x
19. Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW et al (2016) Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases. Cell Mol Neurobiol 36:181-194. https://doi.org/10.1007/s10571-015-0273-8
20. Schob S, Weiß A, Surov A, Dieckow J, Richter C, Pirlich M et al (2018) Elevated Surfactant Protein Levels and Increased Flow of Cerebrospinal Fluid in Cranial Magnetic Resonance Imaging. Mol Neurobiol 55:6227-6236. https://doi.org/10.1007/s12035- 017-0835-5
21. Weiß A, Krause M, Stockert A, Richter C, Puchta J, Bhogal P et al (2019) Rheologically Essential Surfactant Proteins of the CSF Interacting with Periventricular White Matter Changes in Hydrocephalus Patients - Implications for CSF Dynamics and the Glymphatic System. Mol Neurobiol 56:7863-7871. https://doi.org/10.1007/s12035-019-01648-z
22. Araki K, Yagi N, Aoyama K, Choong C-J, Hayakawa H, Fujimura H et al (2019) Parkinson's disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein. Proc Natl Acad Sci USA 116:17963-17969. https://doi.org/10.1073/pnas.19061241169
23. Rasmussen MK, Mestre H, Nedergaard M (2018) The glymphatic pathway in neurological disorders. Lancet Neurol 17:1016-1024. https://doi.org/10.1016/S1474-4422(18)30318-1
24. Doehner J, Genoud C, Imhof C, Krstic D, Knuesel I (2012) Extrusion of misfolded and aggregated proteins--a protective strategy of aging neurons? Eur J Neurosci 35:1938-1950. https://doi.org/10.1111/j.1460-9568.2012.08154.x
25. Kocherhans S, Madhusudan A, Doehner J, Breu KS, Nitsch RM, Fritschy JM et al (2009) Reduced Reelin expression accelerates amyloid-beta plaque formation and tau pathology in transgenic Alzheimer's disease mice. J Neurosci 30:9228-9240. https://doi.org/10.1523/JNEUROSCI.0418-10.2010
26. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al (2003) Tripletransgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ andsynaptic dysfunction. Neuron 39:409–421. https://doi.org/10.1016/s0896-6273(03)00434-3
27. Brückner G, Brauer K, Härtig W, Wolff JR, Rickmann MJ, Derouiche A et al (1993) Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts in the rat brain. Glia 8:183-200. https://doi.org/10.1002/glia.440080306
28. Suttkus A, Holzer M, Morawski M, Arendt T (2016) The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein. Neuroscience 313:225-235. https://doi.org/10.1016/j.neuroscience.2015.11.040
29. Sorg BA, Berretta S, Blacktop JM, Fawcett JW, Kitagawa H, Kwok JC et al (2016) Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity. J Neurosci 36:11459-11468. https://doi.org/10.1523/JNEUROSCI.2351-16.2016
30. Mastrangelo MA, Bowers WJ (2008) Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer's disease-related pathologies in male triple-transgenic mice. BMC Neurosci 9:81. https://doi.org/10.1186/1471-2202-9-81
31. Härtig W, Saul A, Kacza J, Grosche J, Goldhammer S, Michalski et al (2014) Immunolesion-induced loss of cholinergic projection neurones promotes β-amyloidosis and tau hyperphosphorylation in the hippocampus of triple transgenic mice. Neuropathol Appl Neurobiol 40:106-120. https://doi.org/10.1111/nan.12050
32. Hofstein R, Hesse G, Shashoua VE (1983) Proteins of the extracellular fluid of mouse brain: extraction and partial characterization. J Neurochem 40:1448-1455. https://doi.org/10.1111/j.1471-4159.1983.tb13589.x
33. Pulli B, Ali M, Forghani R, Schob S, Hsieh KL, Wojtkiewicz G, Linnoila JJ et al (2013) Measuring myeloperoxidase activity in biological samples. PLoS One 8:e67976. https://doi.org/10.1371/journal.pone.0067976
34. Ross GF, Ikegami M, Steinhilber W, Jobe AH (1999) Surfactant protein C in fetal and ventilated preterm rabbit lungs. Am J Physiol 277:L1104-1108. https://doi.org/10.1152/ajplung.1999.277.6.L1104
35. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recognition 19:41–47. https://doi.org/10.1016/0031-3203(86)90030-0
36. Knuesel I, Nyffeler M, Mormède C, Muhia M, Meyer U, Pietropaolo S et al (2009) Age-related accumulation of Reelin in amyloid-like deposits. Neurobiol Aging 30:697-716. https://doi.org/10.1016/j.neurobiolaging.2007.08.011
37. Butkevich E, Härtig W, Nikolov M, Erck C, Grosche J, Urlaub Het al (2016) Phosphorylation of FEZ1 by Microtubule Affinity Regulating Kinases regulates its function in presynaptic protein trafficking. Sci Rep 6:26965. https://doi.org/10.1038/srep26965
38. Jucker M, Walker LC, Martin LJ, Kit CA, Kleinman HK, Ingram DK, Price DL (1992). Age-associated inclusions in normal and transgenic mouse brain. Science 255(5050):1443-5. doi: 10.1126/science.1542796
39. Jucker M, Walker LC, Kuo H, Tian M, Ingram DK (1994). Age-related fibrillar deposits in brains of C57BL/6 mice. A review of localization, staining characteristics, and strain specificity. Mol Neurobiol. 9(1-3):125-33. doi: 10.1007/BF02816112
40. Willander H, Hermansson E, Johansson J, Presto J (2011) BRICHOS domain associated with lung fibrosis, dementia and cancer--a chaperone that prevents amyloid fibril formation? FEBS J 278:3893-3904. https://doi.org/10.1111/j.1742-4658.2011.08209.x
41. Keller A, Eistetter HR, Voss T, Schäfer KP (1991) The pulmonary surfactant protein C (SP-C) precursor is a type II transmembrane protein. Biochem J 277 (Pt2):493-499. https://doi.org/10.1042/bj277049343
42. Hoe HS, Lee KJ, Carney RS, Lee J, Markova A, Lee JY et al (2009) Interaction of reelin with amyloid precursor protein promotes neurite outgrowth. J Neurosci 29:7459-7473. https://doi.org/10.1523/JNEUROSCI.4872-08.2009
43. Hoe HS, Tran TS, Matsuoka Y, Howell BW, Rebeck GW (2006) Dab1 and Reelin effects on APP and ApoEr2 trafficking and processing. J Biol Chem 281:35176-35185. https://doi.org/10.1074/jbc.M602162200
44. Van Eldik LJ, Griffin WS (1994) S100β expression in Alzheimer's disease: relation to neuropathology in brain regions. Biochim Biophys Acta 1223:398-403. https://doi.org/10.1016/0167-4889(94)90101-5
45. Van Eldik LJ, Wainwright MS (2003) The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 21:97–108.
46. Michetti F, D’Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E et al (2019) The S100B story: from biomarker to active factor in neural injury. J Neurochem 148:168-187. https://doi.org/10.1111/jnc.14574
47. Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G et al (2007) Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci 8:2. https://doi.org/10.1186/1471-2202-8-2
48. Cristóvão JS, Gomes CM (2019) S100 Proteins in Alzheimer's Disease. Front Neurosci. 2019;13:463. https://doi.org/10.3389/fnins.2019.00463
49. Celio MR, Spreafico R, De Biasi S, Vitarello-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21:510-515. https://doi.org/10.1016/s0166-2236(98)01298-3
50. Brauer K, Werner L, Leibnitz L (1982) Perineuronal nets of glia. J Hirnforsch 23:701-708
51. Härtig W, Brauer K, Brückner G (1992) Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. Neuroreport 3:869–872 https://doi.org/10.1097/00001756-199210000-00012.
52. Yamada J, Jinno S (2017) Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J Comp Neurol 525:1234-1249. https://doi.org/10.1002/cne.24132
53. Ueno H, Takao K, Suemitsu S, Murakami S, Kitamura N, Wani K et al (2018) Age-dependent and region-specific alteration of parvalbumin neurons and perineuronal nets in the mouse cerebral cortex. Age-dependent and region-specific alteration of parvalbumin neurons and perineuronal nets in the mouse cerebral cortex. Neurochem Int 112:59-70. https://doi.org/10.1016/j.neuint.2017.11.001
54. Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mäder M et al (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842:15-29. https://doi.org/10.1016/s0006-8993(99)01784-9
55. Wingert JC, Sorg BA (2021) Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Front Synaptic Neurosci 13:673210. https://doi.org/10.3389/fnsyn.2021.673210
56. Wegner F, Härtig W, Bringmann A, Grosche J, Wohlfarth K, Zuschratter W et al (2003) Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex. Exp Neurol 184:705-714. https://doi.org/10.1016/S0014-4886(03)00313-3
57. Horn AKE, Horng A, Buresch N, Messoudi A, Härtig W (2018) Identification of Functional Cell Groups in the Abducens Nucleus of Monkey and Human by Perineuronal Nets and Choline Acetyltransferase Immunolabeling. Front Neuroanat 12:45. https://doi.org/10.3389/fnana.2018.00045
58. Irvine SF, Kwok JCF (2018) Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha Motoneurones. Int J Mol Sci 19:1172. https://doi.org/10.3390/ijms19041172
59. Morawski M, Reinert T, Meyer-Klaucke W, Wagner FE, Tröger W, Reinert A et al (2015) Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties. Sci Rep 5:16471. https://doi.org/10.1038/srep16471
60. Hockfield S, Kalb RG, Zaremba S, Fryer H (1990) Expression of neural correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harb Symp Quant Biol 155:505-514. https://doi.org/10.1101/sqb.1990.055.01.049
61. Bozzelli PL, Alaiyed S, Kim E, Villapol S, Conant K (2018) Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics. Neural Plast 2018:5735789. https://doi.org/10.1155/2018/5735789
62. Carstens KE, Phillips ML, Pozzo-Miller L, Weinberg RJ, Dudek SM (2016) Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons. J Neurosci 36:6312-6320. https://doi.org/10.1523/JNEUROSCI.0245-16.2016
63. Hayani H, Song I, Dityatev A (2018) Increased Excitability and Reduced Excitatory Synaptic Input Into Fast-Spiking CA2 Interneurons After Enzymatic Attenuation of Extracellular Matrix. Front Cell Neurosci 12:149. https://doi.org/10.3389/fncel.2018.00149
64. Lensjø KK, Christensen AC, Tennøe S, Fyhn M, Hafting T (2017) Differential Expression and Cell-Type Specificity of Perineuronal Nets in Hippocampus, Medial Entorhinal Cortex, and Visual Cortex Examined in the Rat and Mouse. eNeuro 4:ENEURO.0379-16.2017. https://doi.org/10.1523/ENEURO.0379-16.2017
65. Gogolla N, Caroni P, Lüthi A, Herry C (2009) Perineuronal nets protect fear erasure. Science 325:258–261. https://doi.org/10.1126/science.1174146
66. Tsien RY (2013) Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci USA 110:12456–12461. https://doi.org/10.1073/pnas.1310158110
67. Lasek AW, Chen H, Chen WY (2018) Releasing Addiction Memories Trapped in Perineuronal Nets. Trends Genet 34:197-208. https://doi.org/10.1016/j.tig.2017.12.004
68. Paylor JW, Wendlandt E, Freeman TS, Greba Q, Marks WN, Howland JG et al (2018) Impaired Cognitive Function after Perineuronal Net Degradation in the Medial Prefrontal Cortex. eNeuro 5:e0253-18.2018. https://doi.org/10.1523/ENEURO.0253-18.2018
69. McRae PA, Baranov E, Rogers SL, Porter BE (2012) Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur J Neurosci 36:3471-3482. https://doi.org/10.1111/j.1460-9568.2012.08268.x
70. Rankin-Gee EK, McRae PA, Baranov E, Rogers S, Wandrey L, Porter BE (2015) Perineuronal net degradation in epilepsy. Epilepsia 56:1124-1133. https://doi.org/10.1111/epi.13026
71. Slaker ML, Jorgensen ET, Hegarty DM, Liu X, Kong Y et al (2018) Cocaine Exposure Modulates Perineuronal Nets and Synaptic Excitability of Fast-Spiking Interneurons in the Medial Prefrontal Cortex. eNeuro 5:ENEURO.0221-18.2018. https://doi.org/10.1523/ENEURO.0221-18.2018
72. Berretta S, Pantazopoulos H, Markota M, Brown C, Batzianouli ET (2015) Losing the sugar coating: Potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res 167:18-27. https://doi.org/10.1016/j.schres.2014.12.040
73. Forostyak S, Homola A, Turnovcova K, Svitil P, Jendelova P, Sykova E (2014) Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells. 32:3163-3172. https://doi.org/10.1002/stem.1812
74. Härtig W, Mages B, Aleithe S, Altmann S, Barthel H, et al. (2017) Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep. Front Integr Neurosci 11:15. https://doi.org/10.3389/fnint.2017.00015
75. Dzyubenko E, Manrique-Castano D, Kleinschnitz C, Faissner A, Hermann DM (2018) Topological remodeling of cortical perineuronal nets in focal cerebral ischemia and mild hypoperfusion. Matrix Biol 74:121-132. https://doi.org/10.1016/j.matbio.2018.08.001
76. Brückner G, Hausen D, Härtig W, Drlicek M, Arendt T, Brauer K (1999) Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer's disease. Neuroscience 92:791–805. https://doi.org/10.1016/s0306-4522(99)00071-8
77. Suttkus A, Morawski M, Arendt T (2016) Protective properties of neural extracellular matrix. Mol Neurobiol 53:73-82. https://doi.org/10.1007/s12035-014-8990-4
78. Morawski M, Brückner MK, Riederer P, Brückner G, Arendt T (2004) Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188:309–315. https://doi.org/10.1016/j.expneurol.2004.04.017
79. Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK et al (2013) Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci USA 110:9130–9135. https://doi.org/10.1073/pnas.1300454110
80. Fawcett JW, Oohashi T, Pizzorusso T (2019) The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 20:451-465. https://doi.org/10.1038/s41583-019-0196-3
81. Reichelt AC, Hare DJ, Bussey TJ, Saksida LM. (2019) Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential. Trends Neurosci 42:458-470. https://doi.org/10.1016/j.tins.2019.04.003
82. Testa D, Prochiantz A, Di Nardo AA (2019) Perineuronal nets in brain physiology and disease. Semin Cell Dev Biol 89:125-135. https://doi.org/10.1016/j.semcdb.2018.09.011
83. Wen TH, Binder DK, Ethell IM, Razak KA (2018) The Perineuronal 'Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders. Front Mol Neurosci 11:270. https://doi.org/10.3389/fnmol.2018.00270
84. de Winter F, Kwok JC, Fawcett JW, Vo TT, Carulli D, Verhaagen J (2016) The Chemorepulsive Protein Semaphorin 3A and Perineuronal Net-Mediated Plasticity. Neural Plast 2016:3679545. https://doi.org/10.1155/2016/3679545
85. Carulli D, Verhaagen J (2021) An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. Int J Mol Sci 22:2434. https://doi.org/10.3390/ijms22052434
86. Van't Spijker HM, Rowlands D, Rossier J, Haenzi B, Fawcett JW, Kwok JCF (2019) Neuronal Pentraxin 2 Binds PNNs and Enhances PNN Formation. Neural Plast 2019:6804575. https://doi.org/10.1155/2019/6804575
87. Beurdeley M, Spatazza J, Lee HH, Sugiyama S, Bernard C, Di Nardo AA et al (2012) Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci 32:9429-9437. https://doi.org/10.1523/JNEUROSCI.0394-12.2012
88. Hou X., Yoshioka N, Tsukano H, Sakai A, Miyata S, Watanabe Y et al (2017) Chondroitin Sulfate Is Required for Onset and Offset of Critical Period Plasticity in Visual Cortex. Sci Rep 7:12646. https://doi.org/10.1038/s41598-017-04007-x
89. Mulugeta S, Beers MF (2003) Processing of surfactant protein C requires a type II transmembrane topology directed by juxtamembrane positively charged residues. J Biol Chem 278:47979-47986. https://doi.org/10.1074/jbc.M308210200