(1) Cui, J.; Li, F.; Shi, Z.-L. Origin and Evolution of Pathogenic Coronaviruses. Nat. Rev. Microbiol. 2019, 17 (3), 181–192. https://doi.org/10.1038/s41579-018-0118-9.
(2) Hu, B.; Guo, H.; Zhou, P.; Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2020, No. December. https://doi.org/10.1038/s41579-020-00459-7.
(3) Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382 (8), 727–733. https://doi.org/10.1056/nejmoa2001017.
(4) Krammer, F. SARS-CoV-2 Vaccines in Development. Nature 2020, 586 (7830), 516–527. https://doi.org/10.1038/s41586-020-2798-3.
(5) Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y. S.; Singh, K. P.; Chaicumpa, W.; Bonilla-Aldana, D. K.; Rodriguez-Morales, A. J. Coronavirus Disease 2019–COVID-19. Clin. Microbiol. Rev. 2020, 33 (4). https://doi.org/10.1128/CMR.00028-20.
(6) Yang, J.; Chen, X.; Deng, X.; Chen, Z.; Gong, H.; Yan, H.; Wu, Q.; Shi, H.; Lai, S.; Ajelli, M.; Viboud, C.; Yu, P. H. Disease Burden and Clinical Severity of the First Pandemic Wave of COVID-19 in Wuhan, China. Nat. Commun. 2020, 11 (1), 1–10. https://doi.org/10.1038/s41467-020-19238-2.
(7) Mathuria, J. P.; Yadav, R.; Rajkumar. Laboratory Diagnosis of SARS-CoV-2 - A Review of Current Methods. J. Infect. Public Health 2020, 13 (7), 901–905. https://doi.org/10.1016/j.jiph.2020.06.005.
(8) Tang, Y.-W.; Schmitz, J. E.; Persing, D. H.; Stratton, C. W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol. 2020, 58 (6). https://doi.org/10.1128/JCM.00512-20.
(9) Ji, T.; Liu, Z.; Wang, G. Q.; Guo, X.; Akbar khan, S.; Lai, C.; Chen, H.; Huang, S.; Xia, S.; Chen, B.; Jia, H.; Chen, Y.; Zhou, Q. Detection of COVID-19: A Review of the Current Literature and Future Perspectives. Biosens. Bioelectron. 2020, 166 (March), 112455. https://doi.org/10.1016/j.bios.2020.112455.
(10) Park, M.; Won, J.; Choi, B. Y.; Lee, C. J. Optimization of Primer Sets and Detection Protocols for SARS-CoV-2 of Coronavirus Disease 2019 (COVID-19) Using PCR and Real-Time PCR. Exp. Mol. Med. 2020, 52 (6), 963–977. https://doi.org/10.1038/s12276-020-0452-7.
(11) Dramé, M.; Tabue Teguo, M.; Proye, E.; Hequet, F.; Hentzien, M.; Kanagaratnam, L.; Godaert, L. Should RT‐PCR Be Considered a Gold Standard in the Diagnosis of COVID‐19? J. Med. Virol. 2020, 92 (11), 2312–2313. https://doi.org/10.1002/jmv.25996.
(12) Harmon, S. A.; Sanford, T. H.; Xu, S.; Turkbey, E. B.; Roth, H.; Xu, Z.; Yang, D.; Myronenko, A.; Anderson, V.; Amalou, A.; Blain, M.; Kassin, M.; Long, D.; Varble, N.; Walker, S. M.; Bagci, U.; Ierardi, A. M.; Stellato, E.; Plensich, G. G.; Franceschelli, G.; Girlando, C.; Irmici, G.; Labella, D.; Hammoud, D.; Malayeri, A.; Jones, E.; Summers, R. M.; Choyke, P. L.; Xu, D.; Flores, M.; Tamura, K.; Obinata, H.; Mori, H.; Patella, F.; Cariati, M.; Carrafiello, G.; An, P.; Wood, B. J.; Turkbey, B. Artificial Intelligence for the Detection of COVID-19 Pneumonia on Chest CT Using Multinational Datasets. Nat. Commun. 2020, 11 (1), 4080. https://doi.org/10.1038/s41467-020-17971-2.
(13) Khatami, F.; Saatchi, M.; Zadeh, S. S. T.; Aghamir, Z. S.; Shabestari, A. N.; Reis, L. O.; Aghamir, S. M. K. A Meta-Analysis of Accuracy and Sensitivity of Chest CT and RT-PCR in COVID-19 Diagnosis. Sci. Rep. 2020, 10 (1), 22402. https://doi.org/10.1038/s41598-020-80061-2.
(14) Pokhrel, P.; Hu, C.; Mao, H. Detecting the Coronavirus (COVID-19). ACS Sensors 2020, 5 (8), 2283–2296. https://doi.org/10.1021/acssensors.0c01153.
(15) Sola Martínez, R. A.; Pastor Hernández, J. M.; Yanes Torrado, Ó.; Cánovas Díaz, M.; de Diego Puente, T.; Vinaixa Crevillent, M. Exhaled Volatile Organic Compounds Analysis in Clinical Pediatrics: A Systematic Review. Pediatr. Res. 2020. https://doi.org/10.1038/s41390-020-01116-8.
(16) Chin, S.-T.; Romano, A.; Doran, S. L. F.; Hanna, G. B. Cross-Platform Mass Spectrometry Annotation in Breathomics of Oesophageal-Gastric Cancer. Sci. Rep. 2018, 8 (1), 5139. https://doi.org/10.1038/s41598-018-22890-w.
(17) Capuano, R.; Khomenko, I.; Grasso, F.; Messina, V.; Olivieri, A.; Cappellin, L.; Paolesse, R.; Catini, A.; Ponzi, M.; Biasioli, F.; Di Natale, C. Simultaneous Proton Transfer Reaction-Mass Spectrometry and Electronic Nose Study of the Volatile Compounds Released by Plasmodium Falciparum Infected Red Blood Cells in Vitro. Sci. Rep. 2019, 9 (1), 12360. https://doi.org/10.1038/s41598-019-48732-x.
(18) Lindinger, W.; Hansel, A.; Jordan, A. On-Line Monitoring of Volatile Organic Compounds at Pptv Levels by Means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) Medical Applications, Food Control and Environmental Research. Int. J. Mass Spectrom. Ion Process. 1998, 173 (3), 191–241. https://doi.org/10.1016/s0168-1176(97)00281-4.
(19) Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R. N. Variation in Volatile Organic Compounds in the Breath of Normal Humans. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729 (1–2), 75–88. https://doi.org/10.1016/S0378-4347(99)00127-9.
(20) Phillips, M.; Cataneo, R. N.; Cummin, A. R. C.; Gagliardi, A. J.; Gleeson, K.; Greenberg, J.; Maxfield, R. A.; Rom, W. N. Detection of Lung Cancer with Volatile Markers in the Breath. Chest 2003, 123 (6), 2115–2123. https://doi.org/10.1378/chest.123.6.2115.
(21) Delfino, R. J.; Gong, H.; Linn, W. S.; Hu, Y.; Pellizzari, E. D. Respiratory Symptoms and Peak Expiratory Flow in Children with Asthma in Relation to Volatile Organic Compounds in Exhaled Breath and Ambient Air. J. Expo. Sci. Environ. Epidemiol. 2003, 13 (5), 348–363. https://doi.org/10.1038/sj.jea.7500287.
(22) van der Schee, M. P.; Hashimoto, S.; Schuurman, A. C.; Repelaer van Driel, J. S.; Adriaens, N.; van Amelsfoort, R. M.; Snoeren, T.; Regenboog, M.; Sprikkelman, A. B.; Haarman, E. G.; van Aalderen, W. M. C.; Sterk, P. J. Altered Exhaled Biomarker Profiles in Children during and after Rhinovirus-Induced Wheeze. Eur. Respir. J. 2015, 45 (2), 440–448. https://doi.org/10.1183/09031936.00044414.
(23) Traxler, S.; Bischoff, A. C.; Saß, R.; Trefz, P.; Gierschner, P.; Brock, B.; Schwaiger, T.; Karte, C.; Blohm, U.; Schröder, C.; Miekisch, W.; Schubert, J. K. VOC Breath Profile in Spontaneously Breathing Awake Swine during Influenza A Infection. Sci. Rep. 2018, 8 (1), 1–10. https://doi.org/10.1038/s41598-018-33061-2.
(24) MacLean, E.; Broger, T.; Yerlikaya, S.; Fernandez-Carballo, B. L.; Pai, M.; Denkinger, C. M. A Systematic Review of Biomarkers to Detect Active Tuberculosis. Nat. Microbiol. 2019, 4 (5), 748–758. https://doi.org/10.1038/s41564-019-0380-2.
(25) Ruszkiewicz, D. M.; Sanders, D.; O’Brien, R.; Hempel, F.; Reed, M. J.; Riepe, A. C.; Bailie, K.; Brodrick, E.; Darnley, K.; Ellerkmann, R.; Mueller, O.; Skarysz, A.; Truss, M.; Wortelmann, T.; Yordanov, S.; Thomas, C. L. P.; Schaaf, B.; Eddleston, M. Diagnosis of COVID-19 by Analysis of Breath with Gas Chromatography-Ion Mobility Spectrometry - a Feasibility Study. EClinicalMedicine 2020, 29–30, 100609. https://doi.org/10.1016/j.eclinm.2020.100609.
(26) Röck, F.; Barsan, N.; Weimar, U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008, 108 (2), 705–725. https://doi.org/10.1021/cr068121q.
(27) Wilson, A. Application of Electronic-Nose Technologies and VOC-Biomarkers for the Noninvasive Early Diagnosis of Gastrointestinal Diseases. Sensors 2018, 18 (8), 2613. https://doi.org/10.3390/s18082613.
(28) Chen, C.-Y.; Lin, W.-C.; Yang, H.-Y. Diagnosis of Ventilator-Associated Pneumonia Using Electronic Nose Sensor Array Signals: Solutions to Improve the Application of Machine Learning in Respiratory Research. Respir. Res. 2020, 21 (1), 45. https://doi.org/10.1186/s12931-020-1285-6.
(29) Sánchez, C.; Santos, J.; Lozano, J. Use of Electronic Noses for Diagnosis of Digestive and Respiratory Diseases through the Breath. Biosensors 2019, 9 (1), 35. https://doi.org/10.3390/bios9010035.
(30) Saktiawati, A. M. I.; Stienstra, Y.; Subronto, Y. W.; Rintiswati, N.; Sumardi; Gerritsen, J.-W.; Oord, H.; Akkerman, O. W.; van der Werf, T. S. Sensitivity and Specificity of an Electronic Nose in Diagnosing Pulmonary Tuberculosis among Patients with Suspected Tuberculosis. PLoS One 2019, 14 (6), e0217963. https://doi.org/10.1371/journal.pone.0217963.
(31) Wintjens, A. G. W. E.; Hintzen, K. F. H.; Engelen, S. M. E.; Lubbers, T.; Savelkoul, P. H. M.; Wesseling, G.; van der Palen, J. A. M.; Bouvy, N. D. Applying the Electronic Nose for Pre-Operative SARS-CoV-2 Screening. Surg. Endosc. 2020. https://doi.org/10.1007/s00464-020-08169-0.
(32) Di Pietrantonio, F.; Benetti, M.; Cannatà, D.; Verona, E.; Palla-Papavlu, A.; Fernández-Pradas, J. M.; Serra, P.; Staiano, M.; Varriale, A.; D’Auria, S. A Surface Acoustic Wave Bio-Electronic Nose for Detection of Volatile Odorant Molecules. Biosens. Bioelectron. 2015, 67, 516–523. https://doi.org/10.1016/j.bios.2014.09.027.
(33) Roto, R.; Rianjanu, A.; Rahmawati, A.; Fatyadi, I. A.; Yulianto, N.; Majid, N.; Syamsu, I.; Wasisto, H. S.; Triyana, K. Quartz Crystal Microbalances Functionalized with Citric Acid-Doped Polyvinyl Acetate Nanofibers for Ammonia Sensing. ACS Appl. Nano Mater. 2020, 3 (6), 5687–5697. https://doi.org/10.1021/acsanm.0c00896.
(34) Rianjanu, A.; Julian, T.; Hidayat, S. N.; Yulianto, N.; Majid, N.; Syamsu, I.; Wasisto, H. S.; Triyana, K. Quartz Crystal Microbalance Humidity Sensors Integrated with Hydrophilic Polyethyleneimine-Grafted Polyacrylonitrile Nanofibers. Sensors Actuators B Chem. 2020, 128286. https://doi.org/10.1016/j.snb.2020.128286.
(35) Julian, T.; Hidayat, S. N.; Rianjanu, A.; Dharmawan, A. B.; Wasisto, H. S.; Triyana, K. Intelligent Mobile Electronic Nose System Comprising a Hybrid Polymer-Functionalized Quartz Crystal Microbalance Sensor Array. ACS Omega 2020, 5 (45), 29492–29503. https://doi.org/10.1021/acsomega.0c04433.
(36) Triyana, K.; Rianjanu, A.; Nugroho, D. B.; As’ari, A. H.; Kusumaatmaja, A.; Roto, R.; Suryana, R.; Wasisto, H. S. A Highly Sensitive Safrole Sensor Based on Polyvinyl Acetate (PVAc) Nanofiber-Coated QCM. Sci. Rep. 2019, 9 (1), 15407. https://doi.org/10.1038/s41598-019-51851-0.
(37) Wasisto, H. S.; Merzsch, S.; Uhde, E.; Waag, A.; Peiner, E. Handheld Personal Airborne Nanoparticle Detector Based on Microelectromechanical Silicon Resonant Cantilever. Microelectron. Eng. 2015, 145, 96–103. https://doi.org/10.1016/j.mee.2015.03.037.
(38) Wasisto, H. S.; Merzsch, S.; Waag, A.; Uhde, E.; Salthammer, T.; Peiner, E. Airborne Engineered Nanoparticle Mass Sensor Based on a Silicon Resonant Cantilever. Sensors Actuators B Chem. 2013, 180, 77–89. https://doi.org/10.1016/j.snb.2012.04.003.
(39) Wasisto, H. S.; Steib, F.; Merzsch, S.; Waag, A.; Peiner, E. Vertical Silicon Nanowire Array-Patterned Microcantilever Resonators for Enhanced Detection of Cigarette Smoke Aerosols. Micro & Nano Lett. 2014, 9 (10), 676–679. https://doi.org/10.1049/mnl.2014.0249.
(40) Park, S. Y.; Kim, Y.; Kim, T.; Eom, T. H.; Kim, S. Y.; Jang, H. W. Chemoresistive Materials for Electronic Nose: Progress, Perspectives, and Challenges. InfoMat 2019, 1 (3), 289–316. https://doi.org/10.1002/inf2.12029.
(41) Utari, L.; Septiani, N. L. W.; Suyatman; Nugraha; Nur, L. O.; Wasisto, H. S.; Yuliarto, B. Wearable Carbon Monoxide Sensors Based on Hybrid Graphene/ZnO Nanocomposites. IEEE Access 2020, 8, 49169–49179. https://doi.org/10.1109/ACCESS.2020.2976841.
(42) Casals, O.; Markiewicz, N.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H. S.; Waag, A.; Prades, J. D. A Parts Per Billion (Ppb) Sensor for NO 2 with Microwatt (ΜW) Power Requirements Based on Micro Light Plates. ACS Sensors 2019, 4 (4), 822–826. https://doi.org/10.1021/acssensors.9b00150.
(43) Markiewicz, N.; Casals, O.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H. S.; Waag, A.; Prades, J. D. Micro Light Plates for Low-Power Photoactivated (Gas) Sensors. Appl. Phys. Lett. 2019, 114 (5), 053508. https://doi.org/10.1063/1.5078497.
(44) Engel, L.; Benito-Altamirano, I.; Tarantik, K. R.; Pannek, C.; Dold, M.; Prades, J. D.; Wöllenstein, J. Printed Sensor Labels for Colorimetric Detection of Ammonia, Formaldehyde and Hydrogen Sulfide from the Ambient Air. Sensors Actuators B Chem. 2021, 330, 129281. https://doi.org/10.1016/j.snb.2020.129281.
(45) Owyeung, R. E.; Panzer, M. J.; Sonkusale, S. R. Colorimetric Gas Sensing Washable Threads for Smart Textiles. Sci. Rep. 2019, 9 (1), 5607. https://doi.org/10.1038/s41598-019-42054-8.
(46) Thepudom, T.; Kladsomboon, S.; Pogfay, T.; Tuantranont, A.; Kerdcharoen, T. Portable Optical-Based Electronic Nose Using Dual-Sensors Array Applied for Volatile Discrimination. In 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology; IEEE, 2012; pp 1–4. https://doi.org/10.1109/ECTICon.2012.6254208.
(47) Wasisto, H. S.; Prades, J. D.; Gülink, J.; Waag, A. Beyond Solid-State Lighting: Miniaturization, Hybrid Integration, and Applications of GaN Nano- and Micro-LEDs. Appl. Phys. Rev. 2019, 6 (4), 041315. https://doi.org/10.1063/1.5096322.
(48) Wu, W.; Stapelfeldt, F.-N.; Kroker, S.; Wasisto, H. S.; Waag, A. A Compact Calibratable Pulse Oximeter Based on Color Filters: Towards a Quantitative Analysis of Measurement Uncertainty. IEEE Sens. J. 2020, 1–1. https://doi.org/10.1109/JSEN.2020.3048118.
(49) Mariana, S.; Gülink, J.; Hamdana, G.; Yu, F.; Strempel, K.; Spende, H.; Yulianto, N.; Granz, T.; Prades, J. D.; Peiner, E.; Wasisto, H. S.; Waag, A. Vertical GaN Nanowires and Nanoscale Light-Emitting-Diode Arrays for Lighting and Sensing Applications. ACS Appl. Nano Mater. 2019, 2 (7), 4133–4142. https://doi.org/10.1021/acsanm.9b00587.
(50) Kononov, A.; Korotetsky, B.; Jahatspanian, I.; Gubal, A.; Vasiliev, A.; Arsenjev, A.; Nefedov, A.; Barchuk, A.; Gorbunov, I.; Kozyrev, K.; Rassadina, A.; Iakovleva, E.; Sillanpää, M.; Safaei, Z.; Ivanenko, N.; Stolyarova, N.; Chuchina, V.; Ganeev, A. Online Breath Analysis Using Metal Oxide Semiconductor Sensors (Electronic Nose) for Diagnosis of Lung Cancer. J. Breath Res. 2019, 14 (1), 016004. https://doi.org/10.1088/1752-7163/ab433d.
(51) Lawal, O.; Ahmed, W. M.; Nijsen, T. M. E.; Goodacre, R.; Fowler, S. J. Exhaled Breath Analysis: A Review of ‘Breath-Taking’ Methods for off-Line Analysis. Metabolomics 2017, 13 (10), 110. https://doi.org/10.1007/s11306-017-1241-8.
(52) Miekisch, W.; Kischkel, S.; Sawacki, A.; Liebau, T.; Mieth, M.; Schubert, J. K. Impact of Sampling Procedures on the Results of Breath Analysis. J. Breath Res. 2008, 2 (2), 026007. https://doi.org/10.1088/1752-7155/2/2/026007.
(53) Phillips, M. Method for the Collection and Assay of Volatile Organic Compounds in Breath. Anal. Biochem. 1997, 247 (2), 272–278. https://doi.org/10.1006/abio.1997.2069.
(54) Guzman, M. I. An Overview of the Effect of Bioaerosol Size in Coronavirus Disease 2019 Transmission. Int. J. Health Plann. Manage. 2020, hpm.3095. https://doi.org/10.1002/hpm.3095.
(55) Morawska, L.; Johnson, G. R.; Ristovski, Z. D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Chao, C. Y. H.; Li, Y.; Katoshevski, D. Size Distribution and Sites of Origin of Droplets Expelled from the Human Respiratory Tract during Expiratory Activities. J. Aerosol Sci. 2009, 40 (3), 256–269. https://doi.org/10.1016/j.jaerosci.2008.11.002.
(56) Lin, L.-W.; Hung, T.-Y. Swivel-HEPA-ETT (SHE) Bougie and HEPA-ETT (HE) Methods for Safe Intubation While Managing Patients with COVID-19. Emerg. Med. J. 2020, emermed-2020-209625. https://doi.org/10.1136/emermed-2020-209625.
(57) Ari, A. Practical Strategies for a Safe and Effective Delivery of Aerosolized Medications to Patients with COVID-19. Respir. Med. 2020, 167, 105987. https://doi.org/10.1016/j.rmed.2020.105987.
(58) Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19 (2), 233. https://doi.org/10.3390/s19020233.
(59) Wang, S.; Yang, J.; Zhang, H.; Wang, Y.; Gao, X.; Wang, L.; Zhu, Z. One-Pot Synthesis of 3D Hierarchical SnO2 Nanostructures and Their Application for Gas Sensor. Sensors Actuators B Chem. 2015, 207, 83–89. https://doi.org/10.1016/j.snb.2014.10.032.
(60) Huang, J.; Wu, J. Robust and Rapid Detection of Mixed Volatile Organic Compounds in Flow Through Air by a Low Cost Electronic Nose. Chemosensors 2020, 8 (3), 73. https://doi.org/10.3390/chemosensors8030073.
(61) Mirzaei, A.; Leonardi, S. G.; Neri, G. Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review. Ceram. Int. 2016, 42 (14), 15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145.
(62) Chen, H.; Qi, X.; Ma, J.; Zhang, C.; Feng, H.; Yao, M. Breath-Borne VOC Biomarkers for COVID-19. medRxiv 2020, 20136523. https://doi.org/10.1101/2020.06.21.20136523.
(63) Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; Ge, W.; Liu, W.; Liang, S.; Chen, H.; Zhang, Y.; Li, J.; Xu, J.; He, Z.; Chen, B.; Wang, J.; Yan, H.; Zheng, Y.; Wang, D.; Zhu, J.; Kong, Z.; Kang, Z.; Liang, X.; Ding, X.; Ruan, G.; Xiang, N.; Cai, X.; Gao, H.; Li, L.; Li, S.; Xiao, Q.; Lu, T.; Zhu, Y.; Liu, H.; Chen, H.; Guo, T. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 2020, 182 (1), 59-72.e15. https://doi.org/10.1016/j.cell.2020.05.032.
(64) Grassin-Delyle, S.; Roquencourt, C.; Moine, P.; Saffroy, G.; Carn, S.; Heming, N.; Fleuriet, J.; Salvator, H.; Naline, E.; Couderc, L.-J.; Devillier, P.; Thévenot, E. A.; Annane, D. Metabolomics of Exhaled Breath in Critically Ill COVID-19 Patients: A Pilot Study. EBioMedicine 2021, 63, 103154. https://doi.org/10.1016/j.ebiom.2020.103154.
(65) Davis, C. E.; Schivo, M.; Kenyon, N. J. A Breath of Fresh Air – the Potential for COVID-19 Breath Diagnostics. EBioMedicine 2021, 63, 103183. https://doi.org/10.1016/j.ebiom.2020.103183.
(66) Gupta, A.; Madhavan, M. V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T. S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J. C.; Wan, E. Y.; Freedberg, D. E.; Kirtane, A. J.; Parikh, S. A.; Maurer, M. S.; Nordvig, A. S.; Accili, D.; Bathon, J. M.; Mohan, S.; Bauer, K. A.; Leon, M. B.; Krumholz, H. M.; Uriel, N.; Mehra, M. R.; Elkind, M. S. V.; Stone, G. W.; Schwartz, A.; Ho, D. D.; Bilezikian, J. P.; Landry, D. W. Extrapulmonary Manifestations of COVID-19. Nat. Med. 2020, 26 (7), 1017–1032. https://doi.org/10.1038/s41591-020-0968-3.
(67) Kaushik, A.; Kumar, R.; Arya, S. K.; Nair, M.; Malhotra, B. D.; Bhansali, S. Organic–Inorganic Hybrid Nanocomposite-Based Gas Sensors for Environmental Monitoring. Chem. Rev. 2015, 115 (11), 4571–4606. https://doi.org/10.1021/cr400659h.
(68) Wang, S.; Kang, Y.; Wang, L.; Zhang, H.; Wang, Y.; Wang, Y. Organic/Inorganic Hybrid Sensors: A Review. Sensors Actuators B Chem. 2013, 182, 467–481. https://doi.org/10.1016/j.snb.2013.03.042.
(69) Hoffmann, M. W. G.; Mayrhofer, L.; Casals, O.; Caccamo, L.; Hernandez-Ramirez, F.; Lilienkamp, G.; Daum, W.; Moseler, M.; Waag, A.; Shen, H.; Prades, J. D. A Highly Selective and Self-Powered Gas Sensor Via Organic Surface Functionalization of p-Si/n-ZnO Diodes. Adv. Mater. 2014, 26 (47), 8017–8022. https://doi.org/10.1002/adma.201403073.
(70) Rianjanu, A.; Nurfani, E.; Arif, M. F.; Triyana, K.; Wasisto, H. S. Stability Evaluation of Quartz Crystal Microbalances Coated with Polyvinyl Acetate Nanofibrous Mats as Butanol Vapor Sensors. Mater. Today Commun. 2020, 101770. https://doi.org/10.1016/j.mtcomm.2020.101770.
(71) Rianjanu, A.; Aflaha, R.; Khamidy, N. I.; Djamal, M.; Triyana, K.; Wasisto, H. S. Room-Temperature Ppb-Level Trimethylamine Gas Sensors Functionalized with Citric Acid-Doped Polyvinyl Acetate Nanofibrous Mats. Mater. Adv. 2021, 2 (11), 3705–3714. https://doi.org/10.1039/D1MA00152C.
(72) Anderson, J. C.; Lamm, W. J. E.; Hlastala, M. P. Measuring Airway Exchange of Endogenous Acetone Using a Single-Exhalation Breathing Maneuver. J. Appl. Physiol. 2006, 100 (3), 880–889. https://doi.org/10.1152/japplphysiol.00868.2005.
(73) Ruzsányi, V.; Péter Kalapos, M. Breath Acetone as a Potential Marker in Clinical Practice. J. Breath Res. 2017, 11 (2), 024002. https://doi.org/10.1088/1752-7163/aa66d3.
(74) Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10 (3), 2088–2106. https://doi.org/10.3390/s100302088.
(75) Wasisto, H. S.; Merzsch, S.; Waag, A.; Uhde, E.; Salthammer, T.; Peiner, E. Evaluation of Photoresist-Based Nanoparticle Removal Method for Recycling Silicon Cantilever Mass Sensors. Sensors Actuators A Phys. 2013, 202, 90–99. https://doi.org/10.1016/j.sna.2012.12.016.
(76) Butera, R. A.; Waldeck, D. H. The Dependence of Resistance on Temperature for Metals, Semiconductors, and Superconductors. J. Chem. Educ. 1997, 74 (9), 1090. https://doi.org/10.1021/ed074p1090.
(77) Blank, T. A.; Eksperiandova, L. P.; Belikov, K. N. Recent Trends of Ceramic Humidity Sensors Development: A Review. Sensors Actuators B Chem. 2016, 228, 416–442. https://doi.org/10.1016/j.snb.2016.01.015.
(78) Anderson, J. H.; Parks, G. A. Electrical Conductivity of Silica Gel in the Presence of Adsorbed Water. J. Phys. Chem. 1968, 72 (10), 3662–3668. https://doi.org/10.1021/j100856a051.
(79) Hanna, G. B.; Boshier, P. R.; Markar, S. R.; Romano, A. Accuracy and Methodologic Challenges of Volatile Organic Compound–Based Exhaled Breath Tests for Cancer Diagnosis. JAMA Oncol. 2019, 5 (1), e182815. https://doi.org/10.1001/jamaoncol.2018.2815.
(80) Yilmaz, M. F.; Danisman, Y.; Larour, J.; Arantchouk, L. Linear Discriminant Analysis Based Predator-Prey Analysis of Hot Electron Effects on the X-Pinch Plasma Produced K-Shell Aluminum Spectra. Sci. Rep. 2019, 9 (1), 11867. https://doi.org/10.1038/s41598-019-47997-6.
(81) Dinnes, J.; Deeks, J. J.; Adriano, A.; Berhane, S.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; Beese, S.; Dretzke, J.; Ferrante di Ruffano, L.; Harris, I. M.; Price, M. J.; Taylor-Phillips, S.; Hooft, L.; Leeflang, M. M.; Spijker, R.; Van den Bruel, A. Rapid, Point-of-Care Antigen and Molecular-Based Tests for Diagnosis of SARS-CoV-2 Infection. Cochrane Database Syst. Rev. 2020. https://doi.org/10.1002/14651858.CD013705.
(82) Islam, N.; Ebrahimzadeh, S.; Salameh, J.-P.; Kazi, S.; Fabiano, N.; Treanor, L.; Absi, M.; Hallgrimson, Z.; Leeflang, M. M.; Hooft, L.; van der Pol, C. B.; Prager, R.; Hare, S. S.; Dennie, C.; Spijker, R.; Deeks, J. J.; Dinnes, J.; Jenniskens, K.; Korevaar, D. A.; Cohen, J. F.; Van den Bruel, A.; Takwoingi, Y.; van de Wijgert, J.; Damen, J. A.; Wang, J.; McInnes, M. D. Thoracic Imaging Tests for the Diagnosis of COVID-19. Cochrane Database Syst. Rev. 2021. https://doi.org/10.1002/14651858.CD013639.pub4.
(83) Hansen, G.; Marino, J.; Wang, Z.-X.; Beavis, K. G.; Rodrigo, J.; Labog, K.; Westblade, L. F.; Jin, R.; Love, N.; Ding, K.; Garg, S.; Huang, A.; Sickler, J.; Tran, N. K. Clinical Performance of the Point-of-Care Cobas Liat for Detection of SARS-CoV-2 in 20 Minutes: A Multicenter Study. J. Clin. Microbiol. 2021, 59 (2). https://doi.org/10.1128/JCM.02811-20.
(84) Bikov, A.; Lázár, Z.; Horvath, I. Established Methodological Issues in Electronic Nose Research: How Far Are We from Using These Instruments in Clinical Settings of Breath Analysis? J. Breath Res. 2015, 9 (3), 034001. https://doi.org/10.1088/1752-7155/9/3/034001.
(85) Bikov, A.; Hernadi, M.; Korosi, B. Z.; Kunos, L.; Zsamboki, G.; Sutto, Z.; Tarnoki, A. D.; Tarnoki, D. L.; Losonczy, G.; Horvath, I. Expiratory Flow Rate, Breath Hold and Anatomic Dead Space Influence Electronic Nose Ability to Detect Lung Cancer. BMC Pulm. Med. 2014, 14 (1), 202. https://doi.org/10.1186/1471-2466-14-202.
(86) Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Portable Electronic Nose Based on Electrochemical Sensors for Food Quality Assessment. Sensors 2017, 17 (12), 2715. https://doi.org/10.3390/s17122715.
(87) Kushch, I.; Schwarz, K.; Schwentner, L.; Baumann, B.; Dzien, A.; Schmid, A.; Unterkofler, K.; Gastl, G.; Spaněl, P.; Smith, D.; Amann, A. Compounds Enhanced in a Mass Spectrometric Profile of Smokers’ Exhaled Breath versus Non-Smokers as Determined in a Pilot Study Using PTR-MS. J. Breath Res. 2008, 2 (2), 026002. https://doi.org/10.1088/1752-7155/2/2/026002.
(88) Chen, X.; Wang, F.; Lin, L.; Dong, H.; Huang, F.; Ghulam Muhammad, K.; Chen, L.; Gorlova, O. Association of Smoking with Metabolic Volatile Organic Compounds in Exhaled Breath. Int. J. Mol. Sci. 2017, 18 (11), 2235. https://doi.org/10.3390/ijms18112235.
(89) Sukul, P.; Schubert, J. K.; Zanaty, K.; Trefz, P.; Sinha, A.; Kamysek, S.; Miekisch, W. Exhaled Breath Compositions under Varying Respiratory Rhythms Reflects Ventilatory Variations: Translating Breathomics towards Respiratory Medicine. Sci. Rep. 2020, 10 (1), 14109. https://doi.org/10.1038/s41598-020-70993-0.
(90) Nurputra, D. K. Genosvid Diagnostic Test for Early Detection of COVID-19 https://clinicaltrials.gov/show/NCT04558372 (accessed Jan 3, 2021).
(91) World Medical Association. World Medical Association Declaration of Helsinki. JAMA 2013, 310 (20), 2191. https://doi.org/10.1001/jama.2013.281053.
(92) Watson, P. F.; Petrie, A. Method Agreement Analysis: A Review of Correct Methodology. Theriogenology 2010, 73 (9), 1167–1179. https://doi.org/10.1016/j.theriogenology.2010.01.003.
(93) World Health Organization. Rational use of personal protective equipment for coronavirus disease (COVID-19): interim guidance https://apps.who.int/iris/bitstream/handle/10665/331498/WHO-2019-nCoV-IPCPPE_use-2020.2-eng.pdf (accessed Jan 4, 2021).