Background: Split fractures of the humeral greater tuberosity (HGT) are common injuries. Although there are numerous surgical treatments for these fractures, no classification system combining clinical and biomechanical characteristics has been presented to guide the choice of fixation method.
Methods: We created a standardised fracture of the HGT in 24 formalin-fixed cadavers. Six were left as single-fragment fractures (Group A), six were further prepared to create single-fragment with medium size full-thickness rotator cuff tear (FT-RCTs) fractures (Group B), six were cut to create multi-fragment fractures (Group C), and six were cut to create multi-fragment with FT-RCT fractures (Group D). Each specimen was fixed with a shortened proximal humeral internal locking system (PHILOS) plate. The fixed fractures were subjected to load and load-to-failure tests and the differences between groups analysed.
Results: The mean load-to-failure values were significantly different between groups (Group A, 446.83 ± 38.98 N; Group B, 384.17 ± 36.15 N; Group C, 317.17 ± 23.32 N and Group D, 266.83 ± 37.65 N, P < 0.05). The load-to-failure values for fractures with a greater tuberosity displacement of 10 mm were significantly different between each group (Group A, 194.00 ± 29.23 N; Group B, 157.00 ± 29.97 N; Group C, 109.00 ± 17.64 N and Group D, 79.67.83 ± 15.50 N; P < 0.05). These findings indicates that fractures with a displacement of 10 mm have different characteristics and should be considered separately from other HGT fractures when deciding surgical treatment.
Conclusions: Biomechanical classification of split fractures of the HGT is a reliable method of categorising these fractures in order to decide surgical treatment. Our findings and proposed system will be a useful to guide the choice of surgical technique for the treatment of fractures of the HGT.