Sample Collection and Isolation of CD34+ Cells
Ethics approval for this study was granted by the Health Research Ethics Committee of the University of Stellenbosch, South Africa (Ethics Reference number: N16/10/134) and all experiments and methods were performed in line with relevant guidelines and regulations. After written informed consent was obtained from each mother, UCB was collected after the scheduled elective Caesarean section. In total, 53 UCB samples (50 – 90 mL) were collected in bags containing anti-coagulant CPDA-1 (citrate-phosphate-Dextrose-Adenine) (SSEM Mthembu Medical (Pty) Ltd, Cape Town, South Africa) from full-term newborn babies, at either Tygerberg orKarl Bremer Hospital, in Cape Town, South Africa. Samples were transported to iThemba LABS at room temperature, where human CD34+ cells were isolated as previously described by Vandevoorde et al. 24. Briefly, peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation on Histopaque®-1077 (density; 1.077 g/mL; Histopaque®-1077, Sigma-Aldrich Co. LLC, St. Louis, Missouri, United States) at 508 RCF for 30 minutes at room temp and lymphocytes were recoverd from the buffy coat. Next, human HSPCs were purified by using CD34+ immunomagnetic beads (Miltenyi Biotec Inc., Bergisch Gladbach, Germany) according to the manufacturer's recommendations. The isolated CD34+ cells were resuspended in 90% fetal bovine serum (FBS) (Gibco, Dun Laoghaire, Dublin, Ireland) and 10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich Co. LLC, St. Louis, Missouri, United States) before -80°C storage. A fraction (~50 µL) of each final CD34+ sample was used to determine the purity of the isolation using the BD Accuri™ C6 flow cytometer (BD Biosciences). Before the samples were analysed, the CD34+ cells were washed with 1% bovine serum albumin (BSA) buffer (Sigma-Aldrich Co. LLC, St. Louis, Missouri, United States), stained with 5 µL of Fluorescein isothiocyanate (FITC) anti-human CD34 monoclonal antibody (Thermofisher Scientific, Massachusetts, United States) and incubated for 30 min at room temperature in the dark. Post incubation, cells were washed with phosphate-buffered saline (PBS) and stained with propidium iodide (PI) (Thermofisher Scientific, Massachusetts, United States) to distinguish dead cells from the viable population. Flow cytometry analysis of 10,000 – 20,000 CD34+ events revealed an average purity of 91.3 ± 0.65%.
Irradiation of CD34+ cells
-
p(66)/Be(40) neutron irradiations
Approximately 3 h before irradiation, CD34+ cells were gradually thawed and resuspended in Iscove's Modified Dulbecco's Medium (IMDM) (Gibco, Dun Laoghaire, Dublin, Ireland), 10% fetal bovine serum (FBS) (Gibco) and 0.5% Penicillin-Streptomycin (Pen-Strep) (Lonza, Walkersville, MD, USA), before being transferred to sterile 2.0 mL cryovials (NEST Biotechnology Co., Ltd., Wuxi, China). Samples were irradiated with a Scanditronix clinical isocentric gantry, where the neutrons are produced by bombarding a thick Beryllium (Be) target with 66 MeV protons generated by the separated sector cyclotron (SSC) at the iThemba LABS Facility (iTL, Cape Town, South Africa). The beam quality was inferred from the neutron energy spectrum with a fluence-weighted average energy of approximately 29.8 MeV for the 29 × 29 cm2 field used 83,84. A hydrogenous filter reduced the contribution of thermal and epithermal neutrons. The source-to-phantom surface distance was 150 cm and irradiations were carried out at a gantry angle of 270°, resulting in a horizontal beam directed onto a water tank containing the CD34+ samples at a depth of 5.2 cm in the water. The Perspex wall thickness of the tank was 9.5 mm. Samples were exposed to different doses ranging from 0.05 to 3 Gy at a dose rate of 0.400 Gy/min. Sham-irradiated control samples were maintained in the control room, receiving only ambient radiation . The output factor (1.097 Gy/MU) was measured at the same position as the samples using an Exradin T2 thimble ionisation chamber, with a wall made from A-150 tissue-equivalent plastic with a 0.53 cm3 active chamber volume flushed with a propane-based tissue-equivalent gas. The 60Co calibration factor used for the cross-calibration of the T2 chamber is traceable to the National Metrology Institute of South Africa (NMISA), while calibrations were performed according to the neutron dosimetry protocol as described in the ICRU Report 45 85.
In this study, 60Co γ-rays were used as a reference radiation quality. The reference dose measurement for the 60Co beam were done using the IAEA TRS-398 protocol. The CD34+ cell suspensions were irradiated in the 2.0 mL cryogenic vials with 60Co γ-rays using a teletherapy unit (Theratron 780). The vials were placed between a 6 mm build-up Perspex plate to ensure dose build-up and a 49.3 mm backscatter plate with a dose rate of 0.468 Gy/min for a 30 x 30 cm2 field size. The lateral dimensions of the build-up plate and backscatter block are 299 x 299 mm2 and 297.5 x 297.5 mm2, respectively. The air gap between the build-up plate and the backscatter block 29.5 mm.The CD34+ samples were exposed to radiation doses of 0.05 to 3.00 Gy depending on the specific assay performed. Sham-irradiated control samples were included for each assay. After irradiations, these samples were incubated at 37°C, with 5% CO2 in 95% humidified atmosphere, until termination time point.
Cytokinesis-block micronucleus (CBMN) assay
A modified version of the micro-culture CBMN assay that was developed in a previous study was used for these experiments 24 (modified protocol is courtesy of the Radiobiology research unit at Ghent University). For the CBMN assay, the cells were irradiated with 0.05, 0.5 or 1 Gy of 60Co γ-rays or p(66)/Be(40) neutrons. After irradiation, CD34+ cells were cultured in a 48-well suspension plate containing 500 µL of complete IMDM supplemented with 10% FBS and 0.5% Pen-Strep and a combination of recombinant haematopoietic cytokines, 100 ng/mL stem cell factor (SCF), 100 ng/mL FLT3 ligand (FL) and 20 ng/mL thrombopoietin (TPO) to stimulate the expansion of the CD34+ cells (all cytokines from Miltenyi Biotec Inc., Bergisch Gladbach, Germany). The irradiated cells were incubated as previously described for 70 h. After 23 h, cytochalasin B (CytoB) (0.75 mg/mL) (Sigma-Aldrich Co. LLC, St. Louis, Missouri, United States) was added, which is an inhibitor of microfilament ring assembly that is required for the completion of cytokinesis, which allows to distinguish once-divided cells based on their binucleated (BN) appearance 63. After 70 h of total culture time, the cells were resuspended gently to reduce cellular clumping and each well was rinsed with PBS. The cell suspension was transferred to Eppendorf tubes, which were then centrifugated at 316 RCF for 8 min at 4°C (Eppendorf 5810R centrifuge, Hamburg, Germany). Cells were exposed to cold 0.075 M Potassium Chloride (KCl) and an overnight fixation in 3:1:4 (methanol/acetic acid/ringer) solution. The next day, the cells were fixed in 3:1 (methanol/acetic acid) and left at 4°C overnight. Then, the cells were dropped on isopropanol-cleaned slides and allowed to air dry. Thereafter, slides were stained with acridine orange (100 µL/10 mL, Sigma-Aldrich Co. LLC, St. Louis, Missouri, United States) and MN were manually counted in BN cells using a fluorescent Zeiss Axio Imager A1 microscope (Carl Zeiss AG, Oberkochen, Germany) at 200x magnification. Approximately 500 BN cells were scored per slide (two slides per sample condition). The nuclear division index (NDI) represents the proliferation rate of the cells and was calculated based on the method described by Fenech 55: NDI = (M1 + 2M2 + 3M3+ 4M4)/N, where M1-M4 indicate the number of cells with 1 – 4 nuclei and N the total number of cells scored.
γ-H2AX foci assay
For the γ-H2AX foci assay, unstimulated CD34+ cells were suspended in 0.5 mL of complete IMDM. The CD34+ cell suspensions were irradiated with 0.5 Gy 60Co γ-rays or p(66)/Be(40) neutrons and incubated for 2 or 18 h post-irradiation to allow foci formation and repair. After incubation, the CD34+ cells were arrested in ice water for 10 min followed by centrifugation onto coated slides (X-tra adhesive slides, Leica Biosystems, Buffalo Grove, IL, USA) using a Cytospin (Cellspin I, Tharmac® GmbH) in a concentration of approximately 800,000 cells/mL. The two slides were prepared for each exposure condition were fixed in PBS containing 3% paraformaldehyde (PFA) (Sigma-Aldrich Co. LLC, St. Louis, Missouri, United States) for 20 min, followed by overnight incubation in 0.5% PFA in PBS. The immunohistochemistry staining of the resulting slides was performed as previously described by Vandevoorde et al. 24. Lastly, slides were scored automatically using the MetaCyte software module of the Metafer 4 scanning system (MetaSystems, Altlussheim, Germany) using a 40X objective. Approximately 500 – 1000 CD34+ cells were scored over two slides per condition. The average number of γ-H2AX foci induced by the different radiation qualities was obtained by subtracting the number of γ-H2AX foci derived from the sham-irradiated control samples of each donor from the average γ-H2AX foci number scored in the irradiated samples of the same donor.
Apoptosis
The isolated CD34+ cells were irradiated with 0.5, 1 and 3 Gy of 60Co γ-rays or p(66)/Be(40) neutrons and incubated for 18 and 42 h as previously described, to allow the apoptosis process to occur. After incubation, the unstimulated CD34+ cell suspension of approximately 100,000 cells/1 mL was centrifuged in a fluorescence-activated cell sorting tube (Corning, New York, United States). The detection of apoptotic cells was achieved using the Annexin V apoptosis detection kit I (Becton Dickinson (BD) Biosciences, New Jersey, United States). Briefly, the concentrated cell suspension was resuspended in 100 µL annexin buffer and stained with anti-Annexin-FITC and PI. After 15 min incubation in the dark, 400 µL annexin buffer (BD Biosciences) was added. Data was acquired on an Accuri™ C6 flow cytometer (BD Biosciences) and approximately 10,000 events were analysed.
Statistical Analysis
The results from the individual experiments were averaged and the corresponding standard error of the mean (SEM) calculated. Statistical analysis was performed using Microsoft Office Excel 2019 (Microsoft Corporation, Washington, DC, USA) and GraphPad Prism Software Version 5.01 for Windows (GraphPad Software, San Diego, CA, USA). FlowJo ™ v10.7 (BD Bioscience) was employed to analyse flow cytometry data. The numbers of experiments (n) are indicated in each figure. The results were obtained over multiple neutron beamtime campaigns and sham-irradiated controls were included at every experiment. Shapiro-Wilk tests assessed normality of the data and Kruskal Wallis test was performed for statistical analysis of the CBMN and apoptosis data. Analysis of variance (ANOVA) was carried out on the NDI and γ-H2AX foci assay data and a significance level of p < 0.05 was used in all tests. All statistical tests were 2-sided, and p-values < 0.05 (*) were considered statistically significant, p < 0.01 (**) highly significant and p < 0.001 (***) extremely significant.