The results of the 16-week intervention demonstrated that the vitamin drinks were a successful vehicle for optimising B vitamin status in older adults. Compared with placebo, there was a significant increase in the concentration of folate, vitamin B12, vitamin B6 and as well as a significant decrease in the related metabolite, homocysteine.
To our knowledge, there are limited interventions using a fortified drink to deliver B vitamin supplementation in an elderly population. A previous study delivered multiple vitamins, including B vitamins and minerals in a drink for 6 months to an older population (Wouters-Wesseling et al. 2005). Similar results to the present study were obtained for vitamin B12 with an improvement in concentrations while homocysteine concentrations were also significantly decreased. Interestingly the B vitamin content of the drinks were lower than our study indicating the effectiveness of low-dose B vitamin supplementation. In a second study using the same concentrations of B vitamins in fortified drinks as the current study, improvements in vitamin B6 and folate status after 24 weeks of supplementation was reported (Manders et al. 2009). Collectively, the results demonstrate the potential of fortified drinks as viable options for improvement of B vitamin status.
To date the majority of work concerning optimisation of B vitamin status has focused on the use of capsules in supplementation studies. However, comparing the results of our intervention to B vitamin interventions using capsules is more difficult as capsule interventions are generally of much longer duration and intervene with higher amounts of B vitamins. For example, the VITACOG study supplemented participants for 2 years with 800 µg folic acid, 500 µg vitamin B12 and 20 mg vitamin B6 daily (Smith et al. 2010) – 4 times the amount of folic acid and 50 times the amount of vitamin B12 used in the Opti-Age Food Intervention Study. As a result, plasma folate concentrations increased by 270% and plasma vitamin B12 doubled in VITACOG participants. In comparison, Opti-Age participants consuming the active drinks had a mean serum folate increase of 16% and a mean serum vitamin B12 increase of 41%. Given the shorter intervention and much lower amount of vitamin B12 in the drinks compared to the VITACOG supplement, the Opti-Age Food Intervention Study was very effective in increasing vitamin B12 status. The lower percent change in serum folate was likely due to the decomposition of folic acid in the Opti-Age drinks over time. A supplement in tablet form containing 1 mg of vitamin B12 was given to participants with vitamin B12 deficiency for 1 year, which caused a 177% increase in the vitamin B12 concentrations of participants (Dangour et al. 2015). Here, again, the higher dose and longer duration of this study likely accounts for the size of the increase in vitamin B12 concentrations. An Australian study which provided B vitamin supplementation in the form of a multivitamin, mineral and antioxidant tablet had an intervention of the same duration as the Opti-Age Food Intervention Study – 16 weeks (Harris et al. 2015). This supplement had a men’s and women’s version with the men’s version containing 35 mg riboflavin, 25 mg vitamin B6, 500 µg folic acid and 120 µg vitamin B12 and the women’s version containing 30 mg riboflavin, 30 mg vitamin B6, 500 µg folic acid and 115 µg vitamin B12. However, a significant effect of supplementation was only seen for vitamin B6 and B12, with no effect on riboflavin or folate status. Although comparison of the two methods of supplementation is difficult, and there are many factors that may also impact the success of interventions such as the baseline B vitamin status, the form of the B vitamins used (e.g. folic acid vs methyltetrahydrofolate) and the age and health status of the participants, the present results indicate that improvements in B vitamin status can be achieved using lower concentrations of B vitamins in a drink format. Supplementation with lower concentrations of B vitamins may be preferable as an amount more in line with daily recommendations and be more readily accepted by consumers. In addition, using low-dose supplementation greatly reduces the risk of B vitamin toxicity or overconsumption. A Tolerable Upper Limit of 25 mg/day has been set for vitamin B6 intake in Ireland while a limit of 1 mg/day has been adopted for folic acid as high intakes have the potential to mask vitamin B12 deficiency (Food Safety Authority of Ireland 2018). In the case of vitamin B12, no upper limit has been set as bioavailability is low.
Within the present work we observed a sharp decline in folic acid concentrations following manufacture. The drinks used in our intervention had fruit juice as the main ingredient. A previous study examining the decline of folic acid content in various fruit juice drinks over time found an average 46% decrease in folic acid content by the end of the testing period (Frommherz et al. 2014). The drink products tested initially contained 90% more folic acid than indicated on the label but this had decreased to around, or just below, the concentration indicated after 1 year. Therefore, adding more folate can be a strategy to deal with degradation over time, but large amounts are needed to ensure that concentrations are still above the target after long term storage. Numerous factors can affect the stability of folic acid in drinks, such as the pH of the solution with folic acid showing reduced stability at acidic pH values (Akhtar et al. 1999). As the pH of the Opti-Age drinks was between 3.5 and 4, this was most likely a factor contributing to the decline in the folic acid concentration. Other factors such as light also cause accelerated degradation of folic acid (Frommherz et al. 2014); however, the Opti-Age drinks were packed in opaque cartons to reduce this impact. Additionally, research has shown that small amounts of ethanol, present in added flavourings can also attenuate folic acid stability in drinks when combined with an acidic pH (Kida et al. 2018). Therefore, future research into strategies such as encapsulation is needed to optimise the incorporation of folic acid into fortified fruit drinks (Ruiz-Rico et al. 2017). Despite the decline in folic acid content, a significant effect of consuming the B vitamin fortified drinks on folate status was observed.
Both the intervention and placebo drinks contained 10 µg vitamin D per drink. Although there was a significant difference in vitamin D status between study centres at baseline, there was no difference between the intervention and placebo group. Additionally, there was no treatment effect of vitamin D, as expected. In general, vitamin D status in this population was optimal prior to the intervention starting with 70.4% of participants having a serum vitamin D concentration of > 50 nmol/L. Only 3.7% of participants had a baseline serum vitamin D concentration of < 25 nmol/L. However, supplementation with vitamin D contained in fortified drinks appeared to prevent a trough in vitamin D concentrations that can often occur in the winter and spring months at higher latitudes (Macdonald et al. 2008; MacDonald et al. 2011). The difference between centres at baseline can perhaps be explained by the difference in latitude between Dublin (UCD) and Coleraine (UU), and also by the fact that UCD participants commenced the intervention earlier in the year compared to the UU participants (August-October compared to October-December). While numerous previous intervention studies have used Smartfish drinks containing vitamin D, vitamin D status was generally not a primary outcome and pre- and post-intervention vitamin D status was not reported (Köhler et al. 2010; Calder et al. 2018; Moran et al. 2018). However, our results clearly show maintenance of vitamin D status was achieved over the winter months with daily consumption of a drink containing 10 µg of vitamin D.
One limitation of this study was the loss of folic acid in the drinks over time following manufacture. Therefore, although we showed a significant increase in serum folate concentrations after 16 weeks of intervention with the fortified drink, this response may have been less than expected owing to participants receiving less folic acid per drink than intended. Likewise, the decrease in homocysteine concentrations as a result of intervention may have been lessened. Another limitation is that we relied on the participants to self-report their compliance and to return any drinks that were not consumed. To combat this an ITT analysis was performed. The major strength of the study is that we used a randomised, double-blinded study design, providing cause-and-effect evidence that the improvement in B vitamin status shown is owing to the B vitamins provided by the fortified drinks, rather than any other dietary factors. The addition of vitamin D to both the active and placebo drinks was another strength of the study, as it benefitted all participants, regardless of group assignment and therefore encouraged compliance. The statistical approach used is another strength of the research. Missing biomarker data were imputed using three methods with the most appropriate for each biomarker chosen allowing all participants who commenced the intervention to be included in analysis with realistic post-intervention data.