1 Sharov, A. Phylogeny of Orthoptera insects. Transactions of the Paleontological Institute, Academy of Science of the USSR118, 3-208 (1968).
2 Grimaldi, D. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005).
3 Schubnel, T. et al. Sound vs. light: wing-based communication in Carboniferous insects. Comm. Biol.4, 1-11 (2021).
4 Crampton, G. The phylogeny and classification of insects. J. Entomol. Zool.16, 33-47 (1924).
5 Zalessky, M. O novykh nacekomykh iz permiskikh otlozhenij bassejnov rek Kamy, Vyatki i Beloj. Trudy Obcsh. Est.Kazan. Univ.52, 1-30 (1929).
6 Scudder, S. H. Palaeodictyoptera; or the affinities and classification of Paleozoic Hexapoda. (1885).
7 Gorochov, A. On the higher classification of the Polyneoptera. Acta Geol. Leopoldensia24, 11 (2001).
8 Béthoux, O. Cladotypic taxonomy applied: titanopterans are orthopterans. Arthropod Syst. Phylo.65, 135-156 (2007).
9 Huang, D., Schubnel, T. & Nel, A. A new middle Permian orthopteran family questions the position of the Order Titanoptera (Archaeorthoptera: Orthoptera). J.18, 1217-1222 (2020).
10 Bethoux, O. The nesting of titanopteran insects within tcholmanvissiids reassured and the earliest caeliferan identified: a reply to Huang et al.(2020). J. Syst. Palaeontol. 18, 1657-1668 (2020).
11 Tillyard, R. in Proceedings of the Linnean Society of New South Wales. 374-377.
12 Riek, E. Further triassic Insects from Brookvale, NSW (orders Orthoptera Saltatoria, Protorthoptera, Perlaria). Rec. Aus. Mus.23, 162-168 (1954).
13 Jell, P. & Lambkin, K. Middle Triassic orthopteroid (Titanoptera) insect from the Esk Formation at Wivenhoe Dam. Memoirs. Queensl. Mus.33, 258 (1992).
14 Yin, A. & Nie, S. An indentation model for the North and South China collision and the development of the Tan‐Lu and Honam fault systems, eastern Asia. Tectonics12, 801-813 (1993).
15 Ree, J.-H., Cho, M., Kwon, S.-T. & Nakamura, E. Possible eastward extension of Chinese collision belt in South Korea: the Imjingang belt. Geology24, 1071-1074 (1996).
16 Chough, S., Kwon, S.-T., Ree, J.-H. & Choi, D. Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Sci. Rev.52, 175-235 (2000).
17 Kwon, S. et al. Evidence for Permo-Triassic collision in far east Asia: the Korean collisional orogen. Earth. Planet. Sci. Lett.279, 340-349 (2009).
18 Oh, C. W. A new concept on tectonic correlation between Korea, China and Japan: histories from the late Proterozoic to Cretaceous. Gondwana Res.9, 47-61 (2006).
19 Zhai, M. et al. Linking the Sulu UHP belt to the Korean Peninsula: Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Res.12, 388-403 (2007).
20 Chang, K.-H. & Zhao, X. North and South China suturing in the east end: What happened in Korean Peninsula? Gondwana Res.22, 493-506 (2012).
21 Egawa, K. & Lee, Y. I. Jurassic synorogenic basin filling in western Korea: Sedimentary response to inception of the western Circum‐Pacific orogeny. Basin Res.21, 407-431 (2009).
22 Lee, S.-W. & Chung, G.-S. Facies Analysis of the Early Mesozoic Hajo Formation in the Chungnam Basin, Boryeong, Korea. J. Korean Ear.Sci.S.31, 18-35 (2010).
23 Kim, J. H. Sphenophyllum sp.(Sphenophyllales) newly found from Upper Triassic Baegunsa Formation, Nampo Group, Korea. Bull. Nat. Sci. Mus. Series C15, 93-96 (1989).
24 Kim, J. H. & Kimura, T. Lobatannularia nampoensis (Kawasaki) Kawasaki from the Upper Triassic Baegunsa Formation, Nampo Group, Korea. P. Jpn. Acad, Series B64, 221-224 (1988).
25 Kim, J.-H. & Lee, G.-H. Fossil Conchostraca from the Amisan Formation of the Nampo Group, Korea. J. Korean Ear.Sci.S.36, 181-189 (2015).
26 Lee, H., Park, S.-I., Choi, T. & Sim, M. S. Post-collisional denudation of an orogenic belt traced from geochronological and bulk-rock geochemical records of the western Korean Peninsula. Int. Geol. Rev.63, 87-108 (2021).
27 Park, S.-I., Kwon, S., Kim, S. W., Hong, P. S. & Santosh, M. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence. J. Asian Ear. Sci.157, 166-186 (2018).
28 Park, S.-I. et al. Inversion of two-phase extensional basin systems during subduction of the Paleo-Pacific Plate in the SW Korean Peninsula: Implication for the Mesozoic “Laramide-style” orogeny along East Asian continental margin. Geosci. Front.10, 909-925 (2019).
29 Koh, H. Tectonic implication of the Mungyeong-Jeongseon tectonic line, the Yeongweol Nappe and the Bansong Group in the Ogcheon belt. Mesozoic Crustal Evolution of Northeast Asia, Korean Institute of Geosci. and Mineral Resources, 228-259 (2006).
30 Jeon, H., Cho, M., Kim, H., Horie, K. & Hidaka, H. Early Archean to Middle Jurassic evolution of the Korean Peninsula and its correlation with Chinese cratons: SHRIMP U-Pb zircon age constraints. J. Geol.115, 525-539 (2007).
31 Egawa, K. & Itoh, Y. East Asia-wide flat slab subduction and Jurassic synorogenic basin evolution in west Korea. Mechanism of sedimentary basin formation—Multidisciplinary approach on active plate margins, 63-81 (2013).
32 Egawa, K. & Lee, Y. I. K-Ar dating of illites for time constraint on tectonic burial metamorphism of the Jurassic Nampo Group (West Korea). Geosci. J.15, 131-135 (2011).
33 Kee, W.-S. et al. 1:1,000,000 Geologic Map of Korea. (Korea Institute of Geoscience and Mineral Resources, Daejeon, 2019).
34 Park, S.-I. & Noh, J. Jangsan fault: Evidence of structural inversion of the Chungnam Basin. J. Geol. S. Korea51, 451-469 (2015).
35 Kobayashi, T. A sketch of Korean geology. American Journal of Science 5, 585-606 (1933).
36 Choi, D. Geology and tectonic evolution of the Korean Peninsula. Seoul: Seoul National University Press (in Korean with English summary) (2014).
37 Choi, H., Kim, D. & Seo, H. Stratigraphy, depositional environment and basin evolution of the daedong strata in the chungnam coalfield: KR-87-(B)-3. Korea Institute of Energy and Resources, 97p (in Korean with English abstract) (1987).
38 Yang, S. The Lower Mesozoic strata. Geology of Korea. Sigma Press, Seoul, Korea, 206-226 (1999).
39 Cluzel, D. Formation and tectonic evolution of early Mesozoic intramontane basins in the Ogcheon belt (South Korea): a reappraisal of the Jurassic “Daebo orogeny”. J. Se. Asian Ear. Sci.7, 223-235 (1992).
40 Kim, B. Geological and paleontological studies of Chungnam Coalfield. J. Geol. S. Korea12, 124-143 (1976).
41 Kim, J. H. Three new Equisetites species found from the Upper Triassic Amisan Formation, Nampo Group, Korea. J. Palaeol. S. Korea6, 91-99 (1990).
42 Kim, J. New fossil plants from the Nampo Group (Lower Mesozoic), Korea. Geosci. J.5, 173-180 (2001).
43 Kim, J.-H., Kim, H.-S., Lee, B.-J., Kim, J.-M. & Lee, H.-K. A new species of Leptostrobus from the Upper Triassic Amisan Formation of the Nampo Group in Korea. J. Korean Ear. Sci.S.23, 30-37 (2002).
44 Kim, J.-H. & Roh, H.-S. Organ fossils of Neocalamitescarrerei from the Amisan Formation of the Nampo Group, Korea. J. Korean Ear.Sci.S.29, 466-473 (2008).
45 Kimura, T. & Kim, B.-K. Geological age of the Daedong flora in the Korean Peninsula and its phytogeographical significance in Asia. P. Jpn. Acad, Series B60, 337-340 (1984).
46 Kim, J. H., Lee, C. K. & Choi, D. Y. Margaritifera cf. isfarensis (Chernishev) from the Amisan Formation, Nampo Group, Korea. J. Geol. S. Korea51, 357-362 (2015).
47 Nam, K. S. & Kim, J.-H. Occurrence of the fossil Mesopsychedobrokhotovae in the Late Triassic Amisan Formation, Nampo Group, Korea and its geological implication. J. Korean Ear. Sci.S. 35, 161-167 (2014).
48 Nam, K. S., Wang, Y., Ren, D., Kim, J. H. & Szwedo, J. An extraordinary palaeontinid from the Triassic of Korea and its significance. Sci.Rep.7, 1-6 (2017).
49 Kim, S.-H., Lee, Y.-N., Park, J.-Y., Lee, S. & Lee, H.-J. The first record of redfieldiiform fish (Actinopterygii) from the Upper Triassic of Korea: Implications for paleobiology and paleobiogeography of Redfieldiiformes. Gondwana Res.80, 275-284 (2020).
50 Kim, J.-H. Species diversity and leaf form of ginkgoaleans from the Mesozoic and Cenozoic strata in Korea. J. Korean Ear. Sci.S. 30, 1-9 (2009).
51 Kim, J.-H. Weltrichia sp. from the Late Triassic Amisan Formation of Nampo Group, Korea. J. Korean Ear. Sci.S. 34, 402-406 (2013).
52 Lee, W.-K., Kim, Y.-S., Kim, C.-Y., Kim, H.-S. & Kim, J.-H. A Revision of Mesozoic Equisetales Annuriopsisbunkeiensis Kimura et Kim from the Amisan Formation of Nampo Group, Korea. J. Korean Ear. Sci.S. 25, 32-38 (2004).
53 Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat.Methods9, 671-675 (2012).
54 Béthoux, O. & Nel, A. Venation pattern and revision of Orthoptera sensu nov. and sister groups. Phylogeny of Palaeozoic and Mesozoic Orthoptera sensu nov. Zootaxa96, 1-88 (2002).
55 Desutter-Grandcolas, L. et al. 3-D imaging reveals four extraordinary cases of convergent evolution of acoustic communication in crickets and allies (Insecta). Sci. Rep.7, 1-8 (2017).
56 Gorochov, A. The first representative of the suborder Mesotitanina from the Paleozoic and notes on the system and evolution of the order Titanoptera (Insecta: Polyneoptera). Paleontol. J.41, 621-625 (2007).
57 Park, T.-Y. S. et al. Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head. Nat.Commun.9, 1-7 (2018).
58 Kim, D.-Y., Lee, M., Nam, G.-S. & Park, T.-Y. S. The first orthopteran fossils from the Lower Cretaceous (Albian) Jinju Formation of Korea: ethological implications for elcanids. Cretaceous Res.125, 104843 (2021).
59 Scotese, C. R. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come In and the Seas Go Out. Annu. Rev. Ear. Planet. Sci.49 (2021).
60 Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Geol. S. Am. Bull.108, 195-207 (1996).
61 Shao, L. et al. Sequence stratigraphy, paleogeography, and coal accumulation regularity of major coal-accumulating periods in China. Int. J. Coal Sci.Technol.7, 240-262 (2020).
62 Dai, S. et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol.219, 103383 (2020).
63 Han, R., Ree, J.-H., Cho, D.-L., Kwon, S.-T. & Armstrong, R. SHRIMP U–Pb zircon ages of pyroclastic rocks in the Bansong Group, Taebaeksan Basin, South Korea and their implication for the Mesozoic tectonics. Gondwana Res.9, 106-117 (2006).
64 Ree, J. H., Kwon, S. H., Park, Y., Kwon, S. T. & Park, S. H. Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: Implications for the timing of strike‐slip shearing and thrusting. Tectonics20, 850-867 (2001).
65 Yang, W., Wang, M., Zheng, D. & Du, Y. Late Triassic sedimentary record from the Nanzhao Basin and implications for the orogeny in the Qinling Orogenic Belt, central China. J. Asian Ear. Sci.166, 120-135 (2018).
66 Yin, H.-f. Triassic biostratigraphy of China. Biostratigraphy of China (2003).
67 Li, F. et al. Analysis of Sedimentary Environment and Coal-forming Pattern of Anyuan Formation in Pingxiang Depression. Sci. Technol. Eng.2016, 23 (2016).
68 Zhang, C., Cui, L., Shao, K., Shao, L. & Hu, Y. The sedimentary environment and palaeogeographic characteristics of the Late Triassic epoch in Shaoshan Coal Field of Hunan Province. Procedia Env. Sci.12, 499-504 (2012).
69 Cheng, Y.-Q., Geng, S.-F., Xie, L.-Z., Ding, X.-Z. 1: 4,000,000 Geological Map of China. (Geological Publishing House, Beijing, 2002).
70 Oh, C. W. et al. First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. J. Geol.113, 226-232 (2005).
71 Oh, C. W., Imayama, T., Jeon, J. & Yi, K. Regional Middle Paleozoic metamorphism in the southwestern Gyeonggi Massif, South Korea: its implications for tectonics in Northeast Asia. J. Asian Ear. Sci.145, 542-564 (2017).
72 Kim, S. W., Kwon, S., Santosh, M., Williams, I. S. & Yi, K. A Paleozoic subduction complex in Korea: SHRIMP zircon U–Pb ages and tectonic implications. Gondwana Res.20, 890-903 (2011).
73 Kim, S. W. et al. Early to Middle Paleozoic tectonometamorphic evolution of the Hongseong area, central western Korean Peninsula: Tectonic implications. Gondwana Res.47, 308-322 (2017).
74 Zhao, L., Zhai, M., Santosh, M. & Zhou, X. Early Mesozoic retrograded eclogite and mafic granulite from the Badu Complex of the Cathaysia Block, South China: Petrology and tectonic implications. Gondwana Res.42, 84-103 (2017).
75 Lu, K. et al. Geochronological and geochemical data of paragneiss and amphibolite from the Chencai Group in South China: implications for petrogenesis and tectonic significance. Geol. J.55, 6823-6840 (2020).
76 Qian, J., Yin, C., Zhang, J. & Jin, X. Early Paleozoic high-temperature metamorphism of garnet amphibolite in the Longyou area, Cathaysia Block of South China: P–T path and tectonic implications. J. Asian Ear. Sci.213, 104744 (2021).
77 Zhao, L., Zhai, M., Zhou, X., Santosh, M. & Ma, X. Geochronology and geochemistry of a suite of mafic rocks in Chencai area, South China: implications for petrogenesis and tectonic setting. Lithos236, 226-244 (2015).
78 Zhao, L., Cui, X., Zhai, M., Zhou, X. & Liu, B. Emplacement and metamorphism of the mafic rocks from the Chencai terrane within the Cathaysia Block: Implications for the Paleozoic orogenesis of the South China Block. J. Asian Ear. Sci.173, 11-28 (2019).
79 Wang, Y. et al. Early Neoproterozoic (∼ 840 Ma) slab window in South China: Key magmatic records in the Chencai Complex. Precambrian Res.314, 434-451 (2018).
80 Li, L., Lin, S., Li, J., He, J. & Ge, Y. Zircon U–Pb ages and Hf isotope compositions of the Chencai migmatite, central Zhejiang Province, South China: constraints on the early Palaeozoic orogeny. Geol. Mag.155, 1377-1393 (2018).
81 Li, J. et al. New insights into Phanerozoic tectonics of South China: Early Paleozoic sinistral and Triassic dextral transpression in the east Wuyishan and Chencai domains, NE Cathaysia. Tectonics36, 819-853 (2017).
82 Xu, Y.-J., Cawood, P. A. & Du, Y.-S. Intraplate orogenesis in response to Gondwana assembly: Kwangsian orogeny, South China. Am. J. Sci.316, 329-362 (2016).
83 Li, Z.-X. et al. Magmatic and metamorphic events during the early Paleozoic Wuyi‑Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Bull.122, 772-793 (2010).
84 Imayama, T., Oh, C. W., Jeon, J. & Yi, K. Neoproterozoic and middle Paleozoic geological events in the eastern Wolhyeonri complex of the southwestern Gyeonggi Massif, South Korea, and their tectonic correlations in northeastern Asia. Lithos382, 105923 (2021).
85 Wang, F. et al. Tectonothermal history of the NE Jiangshan–Shaoxing suture zone: Evidence from 40Ar/39Ar and fission-track thermochronology in the Chencai region. Precambrian Res.264, 192-203 (2015).
86 Lyu, P. et al. The nature of Early Palaeozoic Kwangsian orogenic event in the South China Block: constraints from detrital zircons in Cambrian strata. Int.Geol. Rev. 1-14 (2020).
87 Zhou, b. X., Sun, T., Shen, W., Shu, L. & Niu, Y. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes29, 26 (2006).
88 Gao, W., Wang, Z., Li, L. & Tan, Y. Petrogenesis and tectonic implications of Triassic A-type granites in southeastern China: insights from zircon U–Pb–Hf isotopic and whole-rock geochemical compositions of the Luoguyan and Guiyantou granites in northwestern Fujian Province. Int. Geol. Rev.61, 224-239 (2019).
89 Wang, Y., Zhang, Y., Fan, W. & Peng, T. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. J. Struct. Geol.27, 985-998 (2005).
90 Wang, Y., Fan, W., Guo, F., Peng, T. & Li, C. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: implications for the lithospheric boundary between the Yangtze and Cathaysia blocks. Int. Geol. Rev.45, 263-286 (2003).
91 Wang, B. et al. Phanerozoic multistage tectonic rejuvenation of the continental crust of the cathaysia block: insights from structural investigations and combined zircon U-Pb and mica 40Ar/39Ar geochronology of the granitoids in southern Jiangxi province. J. Geol.122, 309-328 (2014).
92 Shu, L., Wang, B., Cawood, P. A., Santosh, M. & Xu, Z. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China. Tectonics34, 1600-1621 (2015).
93 Sun, Y., Ma, C., Liu, Y. & She, Z. Geochronological and geochemical constraints on the petrogenesis of late Triassic aluminous A-type granites in southeast China. J. Asian Ear. Sci.42, 1117-1131 (2011).
94 Li, W., Ma, C., Liu, Y. & Robinson, P. T. Discovery of the Indosinian aluminum A-type granite in Zhejiang Province and its geological significance. Sci. China Ear. Sci.55, 13-25 (2012).
95 Mao, J. et al. The Indosinian collision–extension event between the South China Block and the Palaeo-Pacific plate: evidence from Indosinian alkaline granitic rocks in Dashuang, eastern Zhejiang, South China. Lithos172, 81-97 (2013).
96 Li, Z.-X. et al. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics532, 271-290 (2012).
97 Tao, N. et al. Post-250 Ma thermal evolution of the central Cathaysia Block (SE China) in response to flat-slab subduction at the proto-Western Pacific margin. Gondwana Res.75, 1-15 (2019).
98 Cho, D.-L., Lee, S. R. & Armstrong, R. Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos105, 191-200 (2008).
99 Park, K.-H., Song, Y.-S. & Seo, J. U-Pb Geochronology of the Triassic foliated granite distributed in the eastern Sancheong area, SW Yeongnam Massif, Korea and its Implications. J. Petrol. S. Korea27, 223-233 (2018).
100 Kim, S. W. et al. Geotectonic framework of Permo–Triassic magmatism within the Korean Peninsula. Gondwana Res.20, 865-889 (2011).
101 Kim, S. W. et al. The middle permian to triassic tectono-magmatic system in the southern Korean Peninsula. Gondwana Res. (2020).
102 Williams, I. S., Cho, D.-L. & Kim, S. W. Geochronology, and geochemical and Nd–Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos107, 239-256 (2009).
103 Lee, B. C., Jo, H. J., Lee, S. H. & Jeong, Y.-J. Geochronology and petrogenesis of the Late Triassic A-type granitoids in the Yeongnam Massif and its implication for Late Triassic geodynamics of northeast Asia. Lithos386, 106018 (2021).