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Abstract The Great Plains Low-Level Jet system consists of very strong winds in the lower
troposphere that transport a huge amount of moisture from the Gulf of Mexico to the Amer-
ican Great Plains. This paper aims to study the extremes of the Transported Moisture (TM)
from the GPLLJ source region to the jet domain; and, for low and high TM, to analyze the
extremal dependence between the upper tail of the precipitation in the GPLLJ sink region
and the lower tail of the tropospheric stability in that region (omega).

The declustered extremes of TM were analyzed using Peaks Over Threshold (POT). A
non-stationary Exponential model was fitted to the cluster maxima. Estimated return levels
show that the extremes of TM are expected to decrease in the future. This is meteorolog-
ically congruent with the known displacement of the western edge of the North Atlantic
Subtropical High, which controls atmospheric circulation in the North Atlantic, and to a
higher scale with the change of phase from negative to positive of the Atlantic Multidecadal
Oscillation.

Bilogistic and Logistic models were fitted to the extremes of (-omega, precipitation) for
low and high TM, respectively. The extremal dependence between "-omega" and precipita-
tion proves to be stronger in the case of high TM. This confirms that dynamical instability
represented by “-omega” is the most important parameter for achieving high values of pre-
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cipitation once there is a mechanism that allows the continuous supply of large amounts of
moisture, such as the derived from a low-level jet system.

Keywords Moisture transport · Great Plains Low-Level Jet · Extreme Value Analysis ·
Peaks Over Threshold methodology · Bivariate Threshold Excess Models

1 Introduction

The World Climate Research Programme (WCRP), which is the United Nations pro-
gramme defining climate research priorities, identifies Weather and Climate extremes as
one of the big challenges: it has been included as an independent chapter in all Intergovern-
mental Panel on Climate Change (IPCC) reports (e.g. Field et al. (2012); Qin et al. (2014);
Masson-Delmotte et al. (2018) ). Within the study of these extremes, the analysis of com-
bined events, defined as "the combination of multiple climate drivers that contributes to so-
cietal or environmental risk", has gained great importance, being multiple the publications
devoted to them in high-impact journals due to their enormous socioeconomic importance
(e.g. Raymond et al. (2020); Ridder et al. (2020); Zscheischler et al. (2020)). Initially fo-
cused on the analysis of the simultaneous or consecutive occurrence of local phenomena,
such as droughts and heat waves, the studies involving precipitation as one of the variables
have been abundant. However, studies trying to link precipitation extremes to large-scale
atmospheric circulation patterns have been much less frequent and, to the best of our knowl-
edge, the role of the large-scale moisture transport has never been considered from this
perspective.

Moisture transport from oceans to continents is the primary component of the atmo-
spheric branch of the water cycle and forms the link between evaporation from the ocean and
precipitation over the continents (Gimeno et al., 2012). There has been an important number
of studies on the role of anomalies in the transport of moisture during natural hydromete-
orological hazards, extreme drought (e.g., Drumond et al. (2019)) or intense precipitation
(e.g. Stohl and James (2004)). The close relation between moisture transport and extreme
precipitation events is maximized when this is studied in the areas of influence of the two
major global mechanisms of atmospheric moisture transport, namely Low-Level Jet (LLJ)
systems and Atmospheric Rivers (ARs), two large-scale dynamical/meteorological struc-
tures, the former being key in tropical and subtropical regions and the latter in extratropical
regions (Gimeno et al., 2016).

A LLJ is a system of very strong winds in the lower troposphere, typically in the first
1000 meters height (Stensrud, 1996). As water vapour is mainly confined in the lower tropo-
sphere, LLJs are major mechanisms of moisture transport at planetary scale. When LLJs are
active, they transport a huge amount of moisture favoring high precipitation in the downwind
regions. In contrast, in periods when LLJs are absent, downwind regions can suffer from
drought events (Gimeno et al., 2016). Within these systems, the Great Plains Low-Level Jet
(GPLLJ) is the most studied one because of its socioeconomic effects. It transports a huge
amount of moisture from the Gulf of Mexico to the American Great Plains and it is mainly
active in the summer (Burrows et al., 2019). Broadly speaking, the GPLLJ carries one-third
of all water vapour entering continental United States (Helfand and Schubert, 1995), and it
is associated with 10 % – 45 % of the summer precipitation of the American Great Plains
region (Hodges and Pu, 2019). In Fig. 1 it is possible to see the climatology of the Great
Plains Low-Level Jet System for the months of June, July and August.

The economic importance of the GPLLJ is enormous in the sense that it determines the
average and extreme precipitation of a large agricultural region, whose production depends
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Fig. 1: Climatology of the Great Plains Low-Level Jet System for June, July and August. The region with the
highest occurrence of LLJs is inside the red curve, with the cross indicating the point at which the proportion
of days on which the LLJ occurs is the highest one. Bluish colors represent the evaporation (mm/day; data
from OAFLUX), reddish colors indicate the precipitation (mm/day, data from CPC) and the arrows sym-
bolize the flux of moisture at each point of the grid under consideration (IVT: Integrated Vapor Transport;
Kg m−1 s−1, data from ERA5). The figure was created following the methodology in Algarra et al. (2019).

on precipitation, occurring large losses from floods and droughts (Basara et al., 2013). It
is also important in the determination of the wind resource and especially in the damage
generated by severe weather, as GPLLJ is closely related to the development of mesoscale
convective systems (Chen et al., 1998) and they are associated with heavy precipitation,
supercelular storms and tornado development (Weaver et al., 2012).

The GPLLJ affects precipitation by increasing its frequency, modifying its spatial dis-
tribution and increasing its intensity (Pitchford and London, 1962; Mo et al., 1995; Walters
and Winkler, 2001; Schumacher and Johnson, 2009; Squitieri and Gallus, 2016; Squitieri
and Gallus Jr, 2016). The underlying mechanism to the relationship between the GPLLJ
and the precipitation is a strong moisture and heat transport at low levels from the Gulf of
Mexico. Moreover, wind convergence at low levels implies atmospheric instability in the
output area of the GPLLJ, favoring upward movement. Therefore, it is evident that trans-
ported moisture and atmospheric instability are two factors that play an important role in
precipitation.

This paper has two main purposes motivated by the dynamics of the complex clima-
tological system extensively described above. The first one is the analysis of TM from an
extremal point of view. The second one is to assess the relation between the maximum val-
ues of precipitation and the minimum observations of "omega" (troposferic stability in the
GPLLJ sink area), when TM is low (25% of the lowest values) and for values of high TM
(25% of the highest values). The Extreme Value Theory (EVT) possesses the proper tools
to do so. For extensively details both theoretical and from a practical perspective see e.g.
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Gumbel (1958), Kotz and Nadarajah (2000), Coles (2001), Beirlant et al. (2004) , de Haan
and Ferreira (2006) and Embrechts et al. (2013).

The structure of the paper is as follows. The data is carefully introduced in Section 2.
Section 3 presents one of most widely used methods for modelling extreme observations,
the Peaks Over Threshold (POT) and the associated Generalized Pareto Distribution (GPD).
Some fundamental aspects of bivariate extreme value modelling are given in Section 4.
Sections 5 and 6 contain the univariate extremal study of TM and the extreme bivariate
analysis of precipitation and "-omega" (the negative sign enables the transformation of a
sample of minima into a sample of maxima). Finally, the results are discussed in Section 7.
Future work is also presented in this section.

2 Data

In a recent paper (Algarra et al., 2019) , a state-of-the-art Lagrangian approach is used
in order to identify the main moisture sources and sinks associated to the GPLLJ (Fig. 2).

Fig. 2: Key regions associated to the GPLLJ: Region with the highest occurrence of LLJs (inside the red
curve, with the cross indicating the point at which the proportion of days on which the LLJ occurs is the
highest one); the GPLLJ major oceanic moisture source region (in blue) and its major moisture sink region
(in green). The figure was created following the methodology in Algarra et al. (2019).

The area inside the red curve is the jet domain, that is, it is the region with the highest
occurrence of LLJs during the period May-October, being the cross the geographical point
at which they occur most frequently (36ºN, 101ºW, 500m height); the area in blue identifies
the major oceanic source region for the moisture reaching the jet domain; and the area in
green corresponds to the main sink of that moisture, once it has been transported by the jet.
So, there are two regions of interest in our analysis: the moisture source and sink regions,
connected by the GPLLJ structure in a temporal domain of several days from the evaporation
in the source to the precipitation in the sink.

Therefore, the series to analyze, based on the sources and sink areas of moisture linked
to the GPLLJ, are:
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1. Transported Moisture (TM) from the GPLLJ source region to the jet domain (mm/-
day), as calculated in Algarra et al. (2019). In this study, a Lagrangian approach was
used to track air parcels reaching the jet domain from the source region. The TM is
then computed by adding the moisture gains of the parcels in the source region before
arriving at the jet domain.

2. Precipitation in the GPLLJ sink region (mm/day): daily series of precipitation inte-
grated in the whole moisture sink region of the GPLLJ taken from the Climate Prediction
Center (CPC) dataset (Xie et al., 2010), which is a state-of-the-art precipitation dataset
(see Sun et al. (2018) for a review on gridded precipitation data).

3. Tropospheric Stability in the GPLLJ sink region (omega, measured in Pa/s): daily se-
ries of vertical velocity computed as the mean of omega at 850 hPa in the sink region,
taken from the reanalysis ERA-5 (Hersbach et al., 2020). Omega is defined as the verti-
cal component of velocity in pressure coordinates (these three-dimensional coordinates
are defined by replacing the usual z-coordinate by atmospheric pressure (p) ). This is,

ω :=
d p
dt

, so negative values of ω represent ascending movements and positive values
correspond to descending movements. The level of 850 hPa (about 1500 m height) is
considered for ω as it represents the vertical movement at the lower troposphere, where
the GPLLJ occurs and most of the moisture is confined.

The series consist of 6992 observations daily recorded from 1 May 1980 to 31 October
2017. This period comprises the extended summer periods since the inclusion of satellite
data in the reanalysis, which occurred in 1979 1 . However, in the statistical analysis to be
done in this article, we will only use the summer months, that is, the June-July-August peri-
ods, because they are the most interesting ones meteorologically speaking (in these months,
the GPLLJ is more active, with occurrence close to 70% of the days). Therefore, we will
initiate our study with series that have 3496 observations, although in fact we have 874
observations in each of the groups of TM.

3 The Generalized Pareto Distribution and the POT approach

The POT approach consists of fitting an asymptotic model to the excesses above a high
(enough) threshold u. Let X1,X2, ... be a sequence of i.i.d. random variables, each having
distribution function F , then the random variable Y = X −u|X > u represents the excesses
of X above u. The GPD is used as an approximation of Fu as long as u is high enough (see
Pickands (1975); Balkema and De Haan (1974)). The distribution function of the GPD is:

Hξ (y|σu) =


1− exp

(
− y

σu

)
, ,ξ = 0,

1−
(

1+ ξ y
σu

)−1
ξ
, ,ξ 6= 0;

(1)

If ξ ≥ 0, y ∈ (0,∞) and if ξ < 0, y ∈ (0,−σu/ξ ). The scale and shape parameters satisfy,
respectively, σu > 0 and−∞< ξ <∞. σu is used to indicate that the scale parameter depends
on the threshold u.

See e.g. de Zea Bermudez and Kotz (2010a), de Zea Bermudez and Kotz (2010b) and
Mackay et al. (2011) for a review of GPD parameter estimation methods. It is possible to
estimate interesting quantities using the estimates of the parameters of the GPD, such as tail
probabilites and extremal quantiles.

1 Extended summer refers to the period of May to October
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3.1 Threshold Selection and Model Assessment

A very important question in the POT approach is how to choose the threshold u. The
problem is in selecting a value that allows a trade-off between the large variance of the
estimators that occurs for too high values of u and the large bias that occurs for too small
values of this threshold. Methods such as the Mean Excess Function, MEF (see Davison and
Smith (1990)) and the stability of the parameter estimates are commonly used to determine
an adequate threshold. Once the threshold is selected, attention focuses on assessing the fit
of the model. For doing so, two goodness-of-fit tests for the GPD are commonly used: the
Cramér-von Mises (CvM) and Anderson-Darling (AD) tests (see Choulakian and Stephens
(2001)). The Likelihood Ratio Test (LRT) is also used to assess if the GPD model can
be reduced to the Exponential distribution (see Coles (2001)). In this situation, the fit to
the Exponential distribution is usually assessed by the Lilliefors-corrected Kolmogorov-
Smirnov (LcKS) test (see Lilliefors (1969) ).

3.2 Dealing with Dependent Sequences

So far, we have assumed that the excesses above a threshold u are i.i.d. However, this
assumption is often unrealistic when working with time series, as there is usually, at least,
short-term temporal dependence that may affect our analysis. The most popular way of
addressing this issue is to carry out a declustering process. The "runs-declustering", which
is explained in Coles (2001), consists on fitting a GPD model to the sample of the maxima
of each cluster of excesses, where clusters are defined as follows: exceedances (observations
above u) separated by less than r non-exceedances are included in the same cluster.

In applications, it is most important to estimate, for a high number m, the m-observation
return level (xm), which satisfies P(X > xm) = p, where p = 1

m . That is, xm is exceeded once
in every m observations. It can be estimated as follows:

x̂m =

u+ σ̂

ξ̂

[(
m Nu

n θ̂
)ξ̂ −1

]
, ,ξ 6= 0,

u+ σ̂ log
(
m Nu

n θ̂
)
, ,ξ = 0,

(2)

where σ̂ and ξ̂ are the estimates of the parameters of the GPD model fitted to the cluster
maxima, Nu is the number of excesses above the threshold u, n is the total number of
observations of the series and θ̂ = Nc

Nu
is the estimate of the extremal index, with Nc being

the number of clusters of excesses.

4 Bivariate Threshold Excess Models

Parametric models
Let F be the joint distribution function of (X1,X2). It may be approximated by a para-

metric model G within the region x1 > u1, x2 > u2. Some parametric bivariate models
are the Logistic model (Gumbel, 1960), the Asymmetric Logistic Model (Tawn, 1988), the
Husler-Reiss Model (Hüsler and Reiss, 1989), the Negative Logistic Model (Joe, 1990), the
Asymmetric Negative Logistic Model (Joe, 1990), the Bilogistic Model (Smith, 1990), the
Negative Bilogistic Model (Coles and Tawn, 1994) and the Coles-Tawn Model (Coles and
Tawn, 1991) . Let ỹ j = 1/x̃ j, with x̃1 and x̃2 being standard Fréchet-transformed values of



Title Suppressed Due to Excessive Length 7

x1 and x2, respectively. Then, for x1 > u1 and x2 > u2, F(x1,x2) may be approximated, for
example, by:

1. If G is the Logistic model: G(x1,x2) = exp
[
−
(

ỹ1/α

1 + ỹ1/α

2

)α]
, where 0 < α ≤ 1.

2. If G is the Bilogistic model: G(x1,x2) = exp
{
−ỹ1q1−α − ỹ2(1−q)1−β

}
, where q =

q(ỹ1, ỹ2;α,β ) is the root of the equation (1−α)ỹ1(1−q)β − (1−β )ỹ2qα = 0. The two
parameters (α and β ) lie in (0,1).

(see, e.g., Beirlant et al. (2004) and Coles (2001) for further details about bivariate mod-
els).

Pickands dependence function and extremal coefficients
It is possible to express a parametric model G as follows:

G(x1,x2) = exp
{
−
(

1
x̃1

+
1
x̃2

)
A
(

x̃1

x̃1 + x̃2

)}
, (3)

where the function A(.) is called Pickands dependence function. A(.) is a convex function
defined on [0,1] with max(t,1− t) ≤ A(t) ≤ 1 for all 0 ≤ t ≤ 1. If X1 and X2 are perfectly
dependent, A(t) = max(t,1− t) , ∀t ∈ [0,1]; if they are independent, A(t) = 1, ∀t ∈ [0,1].

There are some extremal coefficients that can be calculated using A(.), such as the
hereinafter referred to as Dependence coefficient, defined as 2(1−A(1/2)). Independence
corresponds to Dependence = 0 and perfect dependence to Dependence = 1 : the strength
of dependence increases as Dependence increases.

(see, e.g., Beirlant et al. (2004) for extensive information about this topic).

Censored-likelihood method of inference
Let (x1,1,x1,2), ...,(xn,1,xn,2) be independent realizations of (X1,X2). The plane is di-

vided into four regions:

D = (−∞,u1)× (−∞,u2) A = [u1,∞)× (−∞,u2)

B = (−∞,u1)× [u2,∞) C = [u1,∞)× [u2,∞)

The censored-likelihood function is defined as

L(θ ;(x1,1,x1,2), ...,(xn,1,xn,2)) =
n

∏
i=1

ψ (θ ;(xi,1,xi,2)) , (4)

where θ is the parameter vector of the model and

ψ (θ ;(x1,x2)) =



∂ 2F
∂x1∂x2

∣∣∣
(x1,x2)

, (x1,x2) ∈C,

∂F
∂x1

∣∣∣
(x1,u2)

, (x1,x2) ∈ A,

∂F
∂x2

∣∣∣
(u1,x2)

, (x1,x2) ∈ B,

F(u1,u2), (x1,x2) ∈ D.
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Using the likelihood function in (4), it is possible to obtain maximum likelihood es-
timates and asymptotic confidence intervals for the parameters of the bivariate threshold
excess models.

(see e.g. Coles (2001) for further details about this method of inference).

Asymptotic Independence and Asymptotic Dependence
The bivariate threshold excess models presented in this paper rely on the assumption of

asymptotically dependent variables. Considering F1 and F2 as the marginal distributions of
X1 and X2 respectively, the following coefficient is defined:

χ := lim
u→1

P(F2(X2)> u | F1(X1)> u) (5)

χ takes values between 0 and 1 : when X1 and X2 are asymptotically independent, χ = 0; and
when they are asymptotically dependent, 0 < χ ≤ 1. Regarding asymptotically dependent
variables, the extremal dependence is stronger as χ increases. The coefficient χ defined in
(5) may also be obtained as follows:

χ = lim
u→1

χ(u) = lim
u→1

[
2− logP(F1(X1)≤ u,F2(X2)≤ u)

logP(F1(X1)≤ u)

]
, 0 < u < 1. (6)

(see e.g. Coles (2001) for further details about this issue).

5 Univariate analysis of Transported Moisture

In this section we will address the univariate analysis of the series of Transported Mois-
ture (TM) from the GPLLJ source region to the jet domain. We will firstly present a brief
exploratory analysis of the series and, afterwards, the POT analysis with declustering that
was carried out.

5.1 A brief exploratory analysis

The series of TM for the summer periods (months of June, July and August) is expressed
in mm/day and has 3496 observations (38 summers). The data was daily recorded from 1980
to 2017. The plot of the series as well as the histogram with the kernel density estimate are
presented in Fig. 3.

The plot of the series suggests that it is reasonably stationary except for the largest
values, for which a declining trend seems to exist. In the left-hand plot of Fig. 4 we compare
the values of TM which were observed in the first 19 years with the ones recorded during the
latest 19 years; in the right-hand plot of that figure we analyze the TM’s yearly evolution.
The most relevant aspect which can be observed in these figures is that the magnitude of the
large values cleary decreases as time goes by.

5.2 Threshold Models Approach

We model the data by the POT methodology due to its advantages when compared to
the traditional block maxima method. We used a declustering scheme for the exceedances
over the chosen threshold in order to deal with the short-term temporal dependence existing
between them. First, we will present the threshold selection procedure and, afterwards, the
POT analysis with four different run lengths.
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Fig. 3: Plot of the series of TM from the GPLLJ source region to the jet domain (left) and histogram and
kernel density estimate for the TM series (right)

Fig. 4: Boxplots for the observations of the first and second half of the TM series (Years 1980-1998 and Years
1999-2017), on the left; and boxplots for the observations of each summer from 1980 to 2017 for the TM
series, on the right.

Threshold selection
The two methods presented in Subsection 3.1 were applied to the series under study.

The estimated MEF presented in Fig. 5 leads to think that a value around 2 might be an
appropriate threshold, as a linearity pattern is clearly visible to the right of that value. The
Maximum Likelihood (ML) estimates for the shape parameter, plotted in Fig. 5, are approx-
imately constant above u = 2, which supports that u = 2 might be a reasonable choice. For
that choice of u, the number of exceedances is Nu = 201 ( 5.75% largest observations of
TM).

POT analysis with declustering
For correct application of the POT approach, it is necessary to verify if there is some

evidence of excess clustering. The exceedances above the threshold u = 2 are plotted in
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Fig. 5: Estimated MEF of TM (solid black line), with 95% confidence intervals as black dashed lines and
fitted solid blue line beyond u = 2 (left). ML estimates for the shape parameters of the GPD models fitted to
the TM series, as a function of u (right).

Fig. 6 (left). There is some visual evidence that there might be some temporal dependence
between the exceedances. Thus, the R package evd is used to perform "runs-declustering"
with run length (r) equal to 1, 2, 3 and 4. After a thorough analysis of the results obtained
for these values of r, we came to the conclusion that the latter choice seems to be the best.
Fig. 6 (right) shows the cluster maxima for r = 4. The corresponding dates can be found in
Appendix A.

Fig. 6: Exceedances of the TM series above the threshold u = 2 (left). Cluster maxima of excesses of the TM
series above u = 2, performing declustering with run length (r) equal to 4 (right).

Table 1 contains the results with regard to the number of clusters obtained (Nc), the
estimate of the extremal index (θ̂ = Nc/Nu) and the ML estimates for the parameters of the
GPD (ξ̂ , σ̂GPD) and the Exponential model (σ̂EXP), with their corresponding standard errors.
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In the overall, the results are very much alike and clearly support that the Exponential model
seems to be a better alternative than the GPD.

Table 1: Results of the POT analysis for the TM series considering the threshold u = 2 and r = 1,2,3 and 4.

r = 1 r = 2 r = 3 r = 4
Nc 102 96 90 83
θ̂ 0.507 0.478 0.448 0.413

ξ̂ (Std.Err) 0.052 (0.114) 0.052 (0.118) 0.022 (0.118) 0.022 (0.123)
σ̂GPD (Std.Err) 0.367 (0.055) 0.373 (0.058) 0.401 (0.064) 0.408 (0.067)
σ̂EXP (Std.Err) 0.387 (0.038) 0.393 (0.040) 0.410 (0.043) 0.418 (0.046)

Now the question is if we consider the GPD model or the Exponential for modelling the
cluster maxima. The profile log-likelihood 95% confidence interval for ξ is (−0.178,0.321)
and so it is consistent with the hypothesis that ξ = 0 (Exponential model). The Exponen-
tial and the GPD QQ-Plots are presented in Fig. 7. The figure clearly shows that both the
Exponential and the GPD models are both appropriate for modelling the cluster maxima.

Fig. 7: Exponential and GPD QQ-Plots for the cluster maxima of excesses of the TM series, for u = 2 and
r = 4.

For all values of r considered, the Cramér-von Mises (CvM) and Anderson-Darling
(AD) tests did not reject the null hypothesis that the cluster maxima come from a GPD.
Therefore, we can conclude that the GPD model fits well to the data.

The fact that the GPD model fits the declustered excess data does not necessarily mean
that it is better than the Exponential model (limiting case of the GPD when ξ → 0). In order
to test H0 : ξ = 0 vs. H1 : ξ 6= 0, a Likelihood Ratio Test (LRT) was performed. It is possible
to conclude that the Exponential model is more appropriate to model the cluster maxima of
the excesses above u = 2, at all the usual significance levels.

The Lilliefors-corrected Kolmogorov-Smirnov (LcKS) test did not reject the null hy-
pothesis that the cluster maxima of the excesses above u = 2 come from an Exponential
distribution. For all values of r analyzed, the conclusion from this LcKS test is that the
Exponential model fits well to the data, for the usual levels of significance.
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(see Gimeno-Sotelo (2021) for further details about the results of the statistical tests that
were carried out.)

Hence, we will use the Exponential model for the cluster maxima. As previously said,
Fig. 4 seems to indicate a declining trend in the largest values of the series, reflecting non-
stationarity as time evolves. In this framework, it is reasonable to allow the scale parameter
of the Exponential distribution to vary according time. That corresponds to introduce the
year of observation as a covariate. Taking into account that the scale parameter is always
positive, the log link function is used. Thus, the expression for the scale parameter of the
Exponential model that we fitted is the following:

σt = exp{φ0 +φ1 t} , (7)

where t = Year− 1979. The aim of this location modification is to enable time to vary the
38 summer periods.

The results shown in Table 2 indicate that, as suspected, the ML estimate of the param-
eter φ1 is negative for all the values of r considered, what means that the estimate of the
scale parameter of the Exponential model is lower in more recent years when compared to
the initial period. This decrease in the estimate of the scale parameter with time seems to be
more important as r increases.

Table 2: ML estimates for the parameters of the non-stationary Exponential model fitted to the cluster maxima
of excesses of the TM series, choosing u = 2 and r = 1, 2, 3 and 4.

r=1 r=2 r=3 r=4
φ̂0 (Std.Err) -0.726 (0.180) -0.705 (0.187) -0.603 (0.195) -0.538 (0.211)
φ̂1 (Std.Err) -0.014 (0.009) -0.014 (0.009) -0.018 (0.009) -0.020 (0.010)

Now the issue lies in assessing if the non-stationary Exponential model is better when
compared to the stationary one. As usual in the case of nested models, a Likelihood Ratio
Test (LRT) can be used: the null hypothesis of that test in this case is φ1 = 0 (that is, the
stationary model is more appropiate) vs. an alternative, φ1 6= 0. Table 3 shows that the non-
stationarity in the large values of TM starts to become evident for r = 4, at level α = 0.05.

Table 3: Observed value of the LRT statistic and corresponding p-value, for r = 1, 2, 3 and 4.

H0 : φ1 = 0 r=1 r=2 r=3 r=4
LRT statistic 2.375 2.306 3.442 3.926

p-value 0.123 0.129 0.064 0.048

5.2.1 Estimating return levels

As previously said, return level estimation is one of the main focus of any extreme value
analysis. From now on, we will consider the non-stationary Exponential model. For each
value of
t ∈ {1,2, ...,38} the corresponding x̂m(t) is obtained by using σ̂t = exp

{
φ̂0 + φ̂1 t

}
in ex-

pression (2) for ξ = 0. We will just show the plot corresponding to r = 4 (see Fig. 8). The
figure reveals that, in summer 1980 the estimated m-observation return levels are higher than
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the ones observed in summer 2017, for m = 92×38, m = 92×50 and m = 92×100 (there
are 92 observations per year in the TM series, corresponding to the daily observations of
June, July and August). It is also interesting to highlight that the differences between the
estimated return levels become smaller over time. We extracted from Fig. 8 the values of the
estimated return levels in the first and last summers of that series (see Table 4).

Fig. 8: Estimated return levels for the TM series, considering a non-stationary Exponential model for r = 4.

Table 4: Estimated 38-year, 50-year and 100-year return levels for the TM series in the first and the last
summers of the period considered, using the non-stationary Exponential model for r = 4.

38-year return level 50-year return level 100-year return level
Summer 1980 4.531 4.688 5.085
Summer 2017 3.228 3.304 3.497

It is possible to see in Table 4 that the ratio between the estimated 38-year return level for
the last summer of the TM series and the first summer of that series is approximately equal
to 0.712 (representing a decrease of approximately 28.8% in the estimated 38-year return
level from the beginning to the end of the series). In the case of the 50-year return level, the
ratio mentioned before is approximately equal to 0.705 (decrease of approximately 29.5%
in the estimated 50-year return level); and in the case of the 100-year return level, the ratio
equals approximately 0.688 (decrease of approximately 31.2% in the estimated 100-year
return level). Thus, as it is obvious, the interpretation of the results of this table is in line
with the interpretation of Fig. 8 . Moreover, the other comment we made on that figure can
also be checked in Table 4, since the difference between the estimated 100-year return level
and the 38-year return level is approximately 0.554 for the first summer of the TM series and
approximately 0.269 for the last summer of that series. That is, over the period under study,
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the difference between those estimated return levels has approximately decreased 51.4% of
the value corresponding to the first summer.

From these results, and provided the atmospheric conditions evolve in the current man-
ner, it is possible to say that we expect to observe a persistent decrease in the extreme values
of TM as time goes by (see Fig. 8 ).

The univariate modelling was performed by means of the R packages evd (Stephenson,
2002) and extRemes (Gilleland and Katz, 2016). The code used for the computations is
available from the authors upon request.

5.3 Meteorological implications

For the meteorological interpretation of the analysis of TM, we consider as days with
extreme TM those days corresponding to the cluster maxima of excesses of TM for r = 4
(see Appendix A ). In order to explain the meaning of our results in meteorological terms,
Fig. 9 displays the anomalies of the 500 hPa geopotential, moisture fluxes, and precipita-
tion for all days when TM was extreme (panel a)), for extreme days in the first half of the
study period 1980-2017 (panel b)), and for extreme days in the second half (panel c)). A
geopotential tripole with positive anomalies on the central and eastern continent and neg-
ative ones on both sides of the Atlantic Ocean and the Pacific coasts favours atmospheric
circulation from the Caribbean Sea and the Mexican Gulf to the Great Plains, and conse-
quently also implies high values of TM and precipitation in our region of interest. This
tripole is intensified for the first half of our study period and weakens in the second half,
indicating that very high TM is more difficult in the first two decades of the XXI century
than it was in the last two decades of the XX century. This accords with a displacement of
the western edge of the North Atlantic Subtropical High (NASH), the semi-permanent struc-
ture that controls atmospheric circulation in the North Atlantic, which is in turn controlled
by the Atlantic Multidecadal Oscillation (AMO), a dominant mode of climate variability in
the North Atlantic Ocean with period of about 60-80 years (Trenberth et al., 2021). When
the AMO is positive, the NASH is weak, low-level TM from the Caribbean to central and
SE North America is reduced, and precipitation on the Great Plains is also reduced (Seager
et al., 2014). This is exactly what happened in our period of interest, in which the AMO
changed its phase from negative to positive in the mid-nineties (see key figures in Trenberth
et al., 2021), with a continuous increase in the AMO index. This conceptual meteorologi-
cal scheme is in complete agreement with our results in Fig. 8, which shows a decrease in
the estimated 38-year, 50-year and 100-year return levels for the TM series over the study
period.
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Fig. 9: Anomalies of precipitation (in colors, mm/day). The vectors represent the anomalies of IVT (Inte-
grated Vapor Transport, Kg m−1 s−1); the orange lines show the 500 hPa geopotential field together with
their anomalies (black lines). The green cross indicates the point of maximum GPLLJ intensity and green
contour refers to the 75th percentile of the GPLLJ index value. Panel a) : days with extreme TM in the period
1980-2017; panels b) and c) : days with extreme TM corresponding to the periods 1980-1998 and 1999-2017,
respectively.

6 Bivariate analysis of Precipitation and "-omega"

In Section 1 , we introduced the series of precipitation (measured in mm/day) in the
GPLLJ sink region and the series of tropospheric stability in that region (omega, measured
in Pa/s). As it was already referred, these series consist of 3496 observations, corresponding
to the daily observations of the summer months (June, July and August) of the period 1980-
2017. Now, interest focuses on studying the extremal dependence between precipitation
and "-omega" (the sign of "omega" is reversed because the meteorological interest lies on
studying the joint behaviour of the upper tail of precipitation and the lower tail of "omega").
In fact, our study consists in analyzing the bivariate extremes of precipitation and "-omega"
for two subsamples of the series: for the days when the TM from the GPLLJ source region
to the jet domain is high and when it is low. Thus, one subsample consists of the days with
the 25% lowest values of TM, whereas the other one includes the 25% highest values of
that variable (consequently, each subsample includes 874 observations). It is important to
mention that the TM series was lagged 1 day with respect to the series of precipitation and
"-omega", that is, for example, for an observed pair of (-omega,precipitation) occurring on
2 June 1980, the corresponding value of TM is the one that occurred on 1 June 1980. The
reason for doing so is meteorological: precipitation and "-omega" are observed in the GPLLJ
sink region, while the TM is computed on its way from the source region to the jet domain.
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Hence, the moisture arrives at the sink region (approximately) 1 day after it is observed, and
that is why the adjustment that we carried out was necessary 2 .

6.1 Preliminary analysis

The data of interest are the observed pairs of (-omega,precipitation) for the days with
low TM and for those corresponding to high TM. As we can see in Fig. 10 , the boxplots
show that there are higher extreme values of "-omega" when the TM is low than when it is
high. In contrast, there are higher extreme values of precipitation when the TM is high than
when it is low.

Fig. 10: Boxplots of "-omega" (left) and precipitation (right) for low TM and high TM

2 For assessing the influence of the time period, other alternatives were considered. As such, we analyzed
the scenarios of moisture arrival at the sink region 2, 3 and 4 days after it is observed, and the results were
analogous.
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6.2 Fitting the Bivariate Threshold Excess Models

Univariate threshold models for the margins
The fitting of the bivariate threshold excess models requires previous fit of GPD models

to the excesses over appropriate thresholds for each margin.
We came to the conclusion that u1 = 0.03 is a suitable threshold for "-omega" and

u2 = 5.2 is an adequate threshold for the precipitation, for both low TM and high TM.
See Gimeno-Sotelo (2021) for further details about these issues.

The results of the POT analysis can be found in Table 5 . As we can see in that table,
the ML estimates for the shape parameter of the GPD are all negative and larger than −0.5,
which guarantees the asymptotic properties of ML estimation (de Zea Bermudez and Kotz,
2010a). Moreover, the GPD model boundary constraints are satisfied (xF > xn:n).

Table 5: Results of the POT analysis for the "-omega" and precipitation series in the cases of low TM and
high TM, considering thresholds u1 = 0.03 for "-omega" and u2 = 5.2 for precipitation.

-omega(low TM) prec. (low TM) -omega(high TM) prec. (high TM)
Threshold 0.03 5.2 0.03 5.2

Number of excesses 170 55 211 98
Percentage of excesses 19.5% 6.3% 24.1% 11.2%

ξ̂ (Std.Err) -0.180 (0.072) -0.160 (0.128) -0.311 (0.059) -0.163 (0.087)
σ̂ (Std.Err) 0.018 (0.002) 1.185 (0.219) 0.017 (0.001) 1.676 (0.222)

x̂F 0.132 12.583 0.084 15.499
xn:n 0.098 9.134 0.077 11.609

The profile log-likelihood 95% confidence intervals of ξ for "-omega" and precipitation
in the cases of low and high TM. The confidence intervals for ξ for precipitation contain the
value 0, which suggests that the limiting GPD model (Exponential) is more appropriate. In
contrast, the confidence intervals of ξ for "-omega" only contain negative values.

In what concerns the CvM and AD tests, for "-omega" and precipitation, it is concluded
that the GPD model fits well to the data in both cases of low and high TM, for all usual
significance levels. The results of the LRT show that for "-omega", both for low and high
TM, at the level of significance 0.05, the GPD model is more appropriate than the Expo-
nential one. For precipitation, it is possible to conclude that the Exponential model is more
adequate than the GPD one. See Gimeno-Sotelo (2021) for further details.

By means of the LcKS test, we can conclude that the Exponential distribution fits well
to the precipitation excess data. The estimated values of σ and the corresponding standard
errors (in brackets) obtained are: 1.020 (0.138) and 1.442 (0.146) for low TM and high TM,
respectively.

Bivariate analysis
The marginal models for the excesses of (-omega,precipitation) are GPD. In the case

of the precipitation, the limiting form of the GPD (Exponential model) was considered for
simplicity purposes.

In Fig. 11 the observed points of (-omega,precipitation) are represented, for high and low
TM, along with two lines representing the thresholds (u1 = 0.03, u2 = 5.2). This enables the
definition of three "extremal" quadrants as follows:
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A - large values only in "-omega".
B - large values only in precipitation.
C - large values in both variables.

In the plots we also indicate the number of points belonging to each of the quadrants
and the corresponding percentage in terms of the total sample size. It should be mentioned
that the largest difference in the percentages is observed in quadrant C (which reflects the
situation of extremes in both variables).

Fig. 11: Scatterplots for (-omega,precipitation) in the cases of low TM (left) and high TM (right). The red line
refers to the threshold for "-omega" (0.03 in both cases of low and high TM) and the blue line corresponds to
the one for precipitation (5.2 in both cases of low and high TM).

Fig. 12 presents the chi plots for (-omega,precipitation) in the cases of low TM and high
TM. Chi plots are plots of u ∈ (0,1) against empirical estimates of χ(u). The dashed lines
refer to the approximate 95% confidence intervals. It can be seen that the empirical estimates
of χ(u) are larger than 0 in both cases for the values of u close to 1, so it is consistent with
χ > 0, and consequently with the fact that "-omega" and precipitation are asymptotically
dependent in both situations. Therefore, we can assume that the models presented here are
appropriate for these variables.

The joint distribution function of (X1,X2) = (-omega,precipitation) in the cases of low
TM and high TM can be approximated by one bivariate parametric models within the region
C. In order to estimate the parameters of the models, a one-step censored-likelihood method
was used. That is, the maximization of the censored-likelihood function, given in (4), enables
to obtain simultaneously the ML estimates for the marginal and dependence parameters.

In Table 6 it is possible to see the results that we obtained when fitting several usual
parametric bivariate models to the pair (-omega,precipitation) in the cases of low and high
TM.

In Table 6 , in each case, the model with the lowest AIC appears in bold: for low TM,
the best model is the Bilogistic one (AIC=270.826) and for high TM, the Logistic one
(AIC=311.341). It is important to point out that, within each case, the values of AIC are
quite similar.

With respect to the coefficient Dependence, defined as 2(1−A(1/2)), where A(.) is the
corresponding Pickands dependence function. It can be seen in Table 6 that the value of the
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Fig. 12: Chi plots for (-omega,precipitation) in the cases of low TM and high TM.

Dependence coefficient is larger for high TM than for low TM for all the parametric models
considered, which means that the extremal dependence between "-omega" and precipitation
is stronger in the case of high TM than when TM is low.

Table 6: AIC and Dependence coefficient for the parametric models that we fitted to model the joint dis-
tribution function of (-omega,precipitation) in the cases of low and high TM within the region C in both
cases.

Low TM High TM

Parametric Model AIC Dependence
2(1−A(1/2)) AIC Dependence

2(1−A(1/2))
Logistic 272.498 0.232 311.341 0.359

Asymmetric Logistic 273.721 0.200 331.227 0.323
Husler-Reiss 271.328 0.227 311.952 0.352

Negative Logistic 271.351 0.229 311.366 0.357
Asymmetric Negative Logistic 273.722 0.205 315.197 0.348

Bilogistic 270.826 0.207 319.310 0.418
Negative Bilogistic 271.813 0.216 313.031 0.352

Coles-Tawn 271.244 0.203 312.850 0.353

Numerical results slightly vary from Gimeno-Sotelo (2021) due to the optimization method chosen to
maximize the censored-likelihood for each model.

The Bilogistic model proves to be the most adequate to model the joint distribution
function of (-omega,precipitation) within the region C in the case of low TM, whereas the
Logistic model is chosen in the case of high TM.

The ML estimates for the marginal and dependence parameters of those models, as well
as the corresponding standard errors, can be found in Table 7.

The Pickands dependence functions corresponding to the models presented in Table 7
can be found in Fig. 13. In that figure it is possible to see that the Pickands dependence func-
tion corresponding to the Logistic model for high TM is closer to A(t) = max(t,1− t) , t ∈
[0,1] (the perfect dependence case), which means that the extremal dependence between
"-omega" and precipitation is stronger when there is high TM than when the TM is low, as
we had concluded before.
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Table 7: ML estimates (standard errors in brackets) for the marginal and dependence parameters of the bilogis-
tic model for (-omega,precipitation) in the case of low TM; and the logistic model for (-omega,precipitation)
in the case of high TM.

Bilogistic Model (Low TM)
σ̂1 ξ̂1 σ̂2 α̂ β̂

0.018 (0.002) -0.154 (0.077) 1.025 (0.132) 0.911 (0.033) 0.662 (0.114)

Logistic Model (High TM)
σ̂1 ξ̂1 σ̂2 α̂

0.016 (0.001) -0.264 (0.067) 1.498 (0.145) 0.715 (0.034)

σ̂1 and ξ̂1 - estimates of the scale and shape parameter of the GPD for the excess data ("-omega")
σ̂2 - estimate of the scale parameter of the Exponential (precipitation)

α̂ and β̂ - estimates of the dependence parameters of the Bilogistic model
α̂ - estimate of the dependence parameter of the Logistic model.

Fig. 13: Pickands dependence functions corresponding to the fitted Bilogistic model for (-
omega,precipitation) in the case of low TM (left) ; and to the Logistic model for (-omega,precipitation) in the
case of high TM (right) . The dashed black lines refer to the independence (A(t) = 1, t ∈ [0,1]) and perfect
dependence case ( A(t) = max(t,1− t) , t ∈ [0,1] ).

The quantile curve of a joint distribution function F at lower tail probability p is de-
noted as Q(F, p), that is, Q(F, p) := {(x1,x2) : F(x1,x2) = p}. In Fig. 14 the estimates of
the quantile curves Q(Fj,0.95), Q(Fj,0.975) and Q(Fj,0.99) are plotted for each j ∈ {1,2},
where F1 denotes the joint distribution function of (-omega,precipitation) in the case of low
TM and F2 in that of high TM. In order to construct those estimated curves, the models pre-
sented in Table 7 were used. The dates of the 10 days that exceed the estimate of Q(F1,0.95)
and of the 13 days that are beyond the estimate of Q(F2,0.95) are presented in Table 8. This
reflects a stronger extremal dependence when TM is high when compared to low TM. The
meteorological analysis of these concurrent extreme days will be presented in the next Sub-
section.

The R package evd was used (Stephenson, 2002) to perform the bivariate analysis of the
data. The code used for the computations is available from the authors upon request.
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Fig. 14: Estimated quantile curves at lower tail probabilities p = 0.95,0.975,0.99 for the joint distribution
function of (-omega,precipitation) in the cases of low TM (left) and high TM (right), using the fitted models.
In these plots, the red vertical line refers to the threshold for "-omega" and the horizontal one corresponds to
the threshold for precipitation.

Table 8: Concurrent extreme days of (-omega,precipitation) for low TM (first column) and high TM (second
column). They corresponds to the dates beyond the estimate of Q(F1,0.95) and the dates beyond the estimate
of Q(F2,0.95), respectively.

Low TM High TM
1983-6-28 1980-8-15
1994-6-8 1980-8-16
1994-6-23 1981-7-28
1995-6-9 1987-8-26
1998-6-8 1990-7-12
1998-6-9 1990-7-21
2004-7-23 1993-6-18
2008-6-5 1993-6-30
2014-6-15 1993-7-14
2015-8-18 2004-6-10

2005-7-26
2007-8-19
2007-8-24

Year-Month-Day

6.3 Meteorological implications

According to a simple approximation, values of high precipitation (HP) scale with pre-
cipitable water (IWV, the amount of vapour in a vertical sense, which for simplicity we
sometimes refer to as moisture) and with a metric of vertical velocity (Emori and Brown,
2005) 3 . In our analysis, we use a measure of vertical velocity in the quantity "- omega"
at 850Pa obtained from the ERA5 reanalysis, which represents the vertical velocity due to
large-scale motions (synoptic scale, ranging from few hundred to several thousand kilo-
metres), derived primarily from dynamically driven instability such as that associated with
extratropical fronts and cyclones. At a smaller horizontal scale, some other vertical motions

3 In this meteorological context, HP refers to precipitation higher than a local percentile, usually 95th.
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also occur as a result of thermodynamic instability either at the mesoscale (from a few to
several hundred kilometres, such as Mesoscale Convective Systems (MCS)), and at the mi-
croscale (up to a few kilometres only, such as those seen in isolated, clustered, or embedded
MCS storm cells). The quantity "- omega" is not that effective in reproducing vertical motion
linked to these phenomena, and performs poorly in the case of tropical cyclones (structures
between the mesoscale and synoptic scales).

In their analysis of extreme daily precipitation events, Kunkel et al. (2020) corroborated
the results of previous authors who found that although HP events are strongly related to ex-
tremes of IWV, they are not related to extremes of "– omega" as much. For higher values of
HP, the limiting factor is IWV, not "-omega". This is because for very high IWV, thermody-
namic effects play an important role (mesoscale convection, MCS, supercell storms), which
is not the case with low IWV, where only large-scale dynamic instability factors (fronts,
extra-tropical cyclones... ) are of importance. This implies that: (a) higher values of HP may
be achieved with high than with low IWV, b) with low IWV, much higher and more persis-
tent values of dynamic instability ("- omega") are required than for high IWV, when HP can
occur with lower values of "- omega".

Kunkel et al. (2012) showed that for our region of interest (Great Plains) in the summer
months, large-scale synoptic systems such as fronts and extratropical cyclones were respon-
sible for the largest number of HP events, accounting for about 80% of events, with 8%
related to tropical cyclones and 12% to MCS and other smaller-scale convective phenom-
ena. This implies that dynamical instability ("- omega") is the most important parameter for
achieving high values of precipitation once there is a mechanism that allows the continuous
supply of large amounts of moisture (a moisture transport mechanism).

A large amount of TM from the Caribbean source to the region of interest driven by the
GPLLJ (large and sustained transported moisture from the source to the sink of the GPLLJ
system) results in large values of IWV in the region of interest, which do not occur for low
TM. This implies that: a) precipitation has higher values when TM is high than when it is
low, due to the higher values of IWV. b) high precipitation events can occur for moderate-
to-high values of "- omega" when TM is high, but only for high to very high values of "-
omega" when TM is low.

This meteorological rationale is coherent with the results presented in this paper. The
analysis of the dependence of the extremes of precipitation and "- omega" for days with
TM above the 75th percentile compared with those below the 25th percentile confirms the
stronger dependence (a greater probability that an extreme of one variable will be accompa-
nied by an extreme of the other) for high than for low TM. For low TM, an extreme of "-
omega" does not guarantee a precipitation extreme because it may be accompanied by low
IWV. For low values of IWV, only very extreme values of "- omega" may lead to extreme
precipitation.

These results may be better visualized by plotting anomalies of geopotential at 500 hPa,
moisture fluxes and precipitation for the days with TM above the 75th percentile (high TM)
versus the days with TM below the 25th percentile (low TM). In panel b) of Fig. 15 the days
with high TM are used, and there it can be seen that moisture transport is enhanced when a
positive geopotential anomaly is seen over Central and Southeastern North America and a
negative one occurs to the West and to the East, which then favours atmospheric circulation
from the Caribbean and the Mexican Gulf towards the Great Plains. On the other hand, a
positive geopotential anomaly indicates an inhibited vertical movement in this region. The
effect of the enhanced moisture transport is greater than the effect of inhibited vertical move-
ment because positive anomalies of precipitation occur over the Great Plains. The opposite
pattern is seen when the TM is low (panel a)). This clearly accords with the results discussed
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above wherein high precipitation is much more sensitive to IWV and vertical movement ("-
omega").

These patterns are slightly different for the concurrent extreme days of "-omega" and
precipitation (composites of the same meteorological variables but only for the days in-
cluded in Table 8 ). In panel d) of Fig. 15 the concurrent extreme days of
(-omega,precipitation) corresponding to high TM are used. In that panel it can be seen that
the geopotential anomaly tripole is displaced slightly to the West, but this still permits strong
atmospheric circulation from the Caribbean (strong moisture transport) whilst favouring
vertical movement over the Great Plains (negative anomalies of geopotential). This com-
bination of strong moisture transport and moderate vertical movement (but extreme when
compared with all the days with high TM) results in stronger precipitation over the Great
Plains than on all the days when there is high TM. In contrast, the concurrent extreme days
of (-omega,precipitation) with low TM are used in panel c). There it is possible to visual-
ize that the negative geopotential anomalies in Central and Southeastern North America are
intensified, suggesting a stronger vertical movement displaced slightly to the West, permit-
ting greater moisture transport from the Caribbean, although this is outside (to the East) of
the GPLLJ box used in this study (TM as defined in our study thus continues to be low).
This combination of greater vertical movement with some moisture transport also results in
heavier precipitation over the Great Plains than for all the days when TM is low.
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Fig. 15: Anomalies of precipitation (in colors, mm/day). The vectors represent the anomalies of IVT (In-
tegrated Vapor Transport, Kg m−1 s−1); the orange lines show the 500 hPa geopotential field together with
their anomalies (black lines). The green cross indicates the point of maximum GPLLJ intensity and green
contour refers to the 75th percentile of the GPLLJ index value. The days used for the composites are: (a)
those with TM below the 25th percentile (low TM); (b) those with TM above the 75th percentile (high TM);
(c) the concurrent extreme days of (-omega,precipitation) for low TM ; and (d) the concurrent extreme days
of (-omega,precipitation) for high TM.

7 Conclusions and Future Work

The scenario of this paper is set on the Great Plains Low-Level Jet (GPLLJ) system,
which is a system of very strong winds in the lower troposphere that transports a huge
amount of moisture from the Gulf of Mexico to the American Great Plains and is mainly
active during the summer months.

This work aimed to analyze the extremal behaviour of the TM from the GPLLJ source
region to the jet domain; and, in the cases of low and high TM, to study the extremal depen-
dence between the upper tail of the precipitation in the GPLLJ sink region and the lower tail
of the tropospheric stability in the GPLLJ sink region (omega). For this purpose, we used
the series of daily observations of TM, precipitation and "omega" of all June-July-August
periods from 1980 to 2017, which amounts to 3496 observations.

In terms of the univariate analysis of TM, we used the POT methodology. The "runs-
declustering" was used in order to reduce the temporal dependence between the exceedances.
The declustering process was performed for several values of run length (r), namely 1,2,3
and 4. We came to the conclusion that the Exponential model was more appropriate than
the GPD to model the cluster maxima of excesses over the chosen threshold. Moreover, we
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concluded that in the case of r = 4, the non-stationary model was more adequate than the
stationary one. The non-stationarity over time starts to be evident for r equal to 4, reflected
by a declining scale parameter. The estimated 38-year, 50-year and 100-year return levels
for the TM series also decreased over time and, additionally, the difference between them
became smaller. It is important to recall that a "t-year" return level corresponds to a value
which will be exceeded once in "t-summer" periods to come. Therefore, it is possible to say
that we expect to observe lower extreme values of TM in the future.

This result is in meteorological agreement with some of the observed changes in the
North Atlantic atmospheric circulation and in the climate variability mode that controls the
decadal scale, the Atlantic Multidecadal Oscillation (AMO). The change of phase of AMO
from negative to positive in the mid-nineties and the continuous increase in the AMO index
up to the end of the studied period result in a displacement of the western edge of the North
Atlantic Subtropical High and reduced low-level moisture transport from the Caribbean to
central and SE North America.

Moreover, we analyzed the bivariate extremes of (-omega,precipitation) in the cases of
low and high TM. The sign of "omega" was changed because, meteorologically speaking,
the interest lied on the study of the joint behaviour of the upper tail of precipitation and
the lower tail of "omega". The series of precipitation and "-omega" were lagged 1 day with
respect to the TM series due to the temporal nature of the GPLLJ system. The fit of bi-
variate threshold excess models requires previous fit of univariate threshold models to the
margins. Two GPD models were fitted to the margins. In the case of precipitation, the shape
parameter of the fitted GPD was very close to zero. Considering that the Exponential distri-
bution results as the limiting case of the GPD when ξ tends to zero, the GPD was reduced
to its limiting form. The censored-likelihood method was used for fitting several different
parametric models. The most parsimonious models were the Bilogistic and the Logistic, for
low and high TM, respectively. The extremal dependence between "-omega" and precipita-
tion proved to be stronger in the case of high TM than when TM is low. This conclusion
can be visualized by means of the estimated Pickands dependence functions. Additionally,
the chi plots allowed us to conclude that it is reasonable to assume that the variables are
asymptotically dependent, in both the cases of low and high TM.

The results of the bivariate analysis have two important meteorological implications.
Firstly, they confirm that dynamical instability, as quantified by "–omega", is the most im-
portant parameter for achieving high values of precipitation once there is a moisture trans-
port mechanism such as a low-level jet system, which continuously supply large amounts of
moisture. Secondly, they confirm that moderate-to-high values of dynamical instability are
necessary to generate high precipitation when TM is high, but high to very high values are
required when TM is low.

Future work should involve extending worldwide the univariate analysis of the mois-
ture transport driven by the different LLJ systems (Algarra et al., 2019). It would also be
interesting to perform an analogous analysis for the TM by the other major moisture trans-
port systems, the atmospheric rivers; see Algarra et al. (2020). In that work, an increasing
trend of moisture taken by atmospheric rivers in their main sources was identified. How-
ever, only the mean values were studied and the analysis of the extremes of the moisture
transport remain to be analyzed in order to assess if they exhibit the same behavior. Re-
garding the bivariate analysis involving precipitation and vertical movement, it would also
be convenient to extend the analysis at a global level for the other LLJ systems. Addition-
ally, it would be interesting to discriminate according to the type of precipitation, separating
large-scale precipitation from another more localized, such as that derived from MCS or
isolated storms. Moreover, in that case of localized precipitation, adding other variables that
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reproduce vertical movements on a smaller scale would also be of interest, for example the
Convective Available Potential Energy (CAPE), which better reproduces movements derived
from thermodynamic instability. Finally, due to the extensive data that we possess regarding
the climate processes addressed in this paper, we intend to carry out in the near future ex-
tremal analyses which will take into account the spatial characteristics of the meteorological
phenomena (see Davison et al., 2012 and Huser and Wadsworth, 2020).
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Appendix A Dates corresponding to the cluster maxima of excesses for r=4

See Table 9, which contains the dates corresponding to the cluster maxima of excesses
for r = 4.

Table 9: Dates corresponding to the cluster maxima of excesses for r = 4.

Year Month-Day
1980 7-8, 8-13
1981 7-10, 7-29, 8-14
1982 7-1, 8-5, 8-26
1983 7-20, 8-26
1984 6-15, 8-11
1985 6-5, 6-25
1986 6-3, 7-18, 8-25
1987 6-10, 7-10, 7-25, 8-10, 8-25
1988 7-31, 8-7
1989 7-27, 8-27
1990 7-8, 7-19
1991 6-30, 7-17, 7-23
1992 7-11, 7-21
1993 6-16, 7-3, 7-29, 8-19
1994 7-17
1995 8-2, 8-9
1996 6-28, 8-9, 8-25
1997 6-23, 7-10
1998 7-5, 8-1
1999 7-5, 7-23, 8-4
2000 7-8, 8-12, 8-17, 8-24
2002 6-22, 7-5
2003 8-16
2004 7-13
2005 7-22
2006 8-5
2007 6-28, 7-21, 8-22
2008 7-6, 7-25
2010 7-29
2011 7-3, 7-12, 8-1
2013 7-17, 8-28
2014 6-22, 7-12, 8-23
2015 6-17, 7-30
2016 6-3, 6-26, 7-19, 8-8, 8-18, 8-28
2017 8-21
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