1. Misu A, et al. Two Different Functions of Connexin43 Confer Two Different Bone Phenotypes in Zebrafish. The Journal of biological chemistry 291, 12601-12611 (2016).
2. Takaku Y, et al. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps. Scientific reports 4, 3573 (2014).
3. Zong L, Zhu Y, Liang R, Zhao HB. Gap junction mediated miRNA intercellular transfer and gene regulation: A novel mechanism for intercellular genetic communication. Scientific reports 6, 19884 (2016).
4. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of extracellular vesicles 7, 1535750 (2018).
5. Veziroglu EM, Mias, G. Characterizing Extracellular Vesicles and Their Diverse RNA Contents Frontiers genetics 11, 700 (2020).
6. Kalra H SR, Ji H, Aikawa E, Altevogt P, Askenase P, et al. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. Plos biology 10, e1001450 (2012).
7. Pan BTJ, R.M. . Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. . Cell 33, 967-978 (1983).
8. Harding C HJ, Stahl P. . Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 35, 256-263 (1984).
9. Johnstone RM, M. A, R. HJ, L. O, C. T. Vesicle Formation during Reticulocyte Maturation - Association of Plasma-Membrane Activities with Released Vesicles (Exosomes). The Journal of biological chemistry 262, 9412-9420 (1987).
10. Skryabin GO, Komelkov AV, Savelyeva EE, Tchevkina EM. Lipid Rafts in Exosome Biogenesis. Biochemistry Biokhimiia 85, 177-191 (2020).
11. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual review of cell and developmental biology 30, 255-289 (2014).
12. Kalluri R, LeBleu VS. The biology, function and biomedical applications of exosomes. Science 367, eaau6977 (2020).
13. Anand S, Samuel M, Kumar S, Mathivanan S. Ticket to a bubble ride: Cargo sorting into exosomes and extracellular vesicles. Biochimica et biophysica acta Proteins and proteomics 1867, 140203 (2019).
14. Kowal J, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America 113, E968-977 (2016).
15. Juan T, Furthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Seminars in cell & developmental biology 74, 66-77 (2018).
16. Ludwig N, Whiteside TL, Reichert TE. Challenges in Exosome Isolation and Analysis in Health and Disease. International journal of molecular sciences 20, (2019).
17. Coakley G, Maizels RM, Buck AH. Exosomes and Other Extracellular Vesicles: The New Communicators in Parasite Infections. Trends Parasitol 31, 477-489 (2015).
18. Peinado H, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine 18, 883-891 (2012).
19. Ghajar CM, et al. The perivascular niche regulates breast tumour dormancy. Nature Cell Biology 15, 807-817 (2013).
20. Peinado H, et al. Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer 17, 302-317 (2017).
21. Lu M, Huang Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials 242, 119925 (2020).
22. Gradilla AC, et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nature communications 5, 5649 (2014).
23. Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nature cell biology 14, 1036-1045 (2012).
24. Liegeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. The Journal of cell biology 173, 949-961 (2006).
25. Wehman AM, Poggioli, C., Schweinsberg, P., Grant, B. D., Nance, J. The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos. Curr Biol 21, 1951-1959 (2011).
26. Schatz D, Vardi A. Extracellular vesicles — new players in cell–cell communication in aquatic environments. Current Opinion in Microbiology 43, 148-154 (2018).
27. Allocca M, et al. An Integrated Multilevel Analysis Profiling Biosafety and Toxicity Induced by Indium- and Cadmium-Based Quantum Dots in Vivo. Environmental science & technology 53, 3938-3947 (2019).
28. Ambrosone A, et al. Dissecting common and divergent molecular pathways elicited by CdSe/ZnS quantum dots in freshwater and marine sentinel invertebrates. Nanotoxicology 11, 289-303 (2017).
29. Quinn B, Gagnè F, Blaise C. Hydra, a model system for environmental studies. The International journal of developmental biology 56, 613-625 (2012).
30. Tortiglione C, et al. Semiconducting polymers are light nanotransducers in eyeless animals. Sci Adv 3, e1601699 (2017).
31. Veronesi G, et al. In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X-Ray Microspectroscopy. ACS applied materials & interfaces 11, 35630-35640 (2019).
32. Moros M, et al. In Vivo Bioengineering of Fluorescent Conductive Protein-Dye Microfibers. iScience 23, 101022 (2020).
33. Moros M, et al. Gold Nanorods and Nanoprisms Mediate Different Photothermal Cell Death Mechanisms In Vitro and In Vivo. ACS Appl Mater Interfaces 12, 13718-13730 (2020).
34. Bosch TC. Hydra and the evolution of stem cells. BioEssays : news and reviews in molecular, cellular and developmental biology 31, 478-486 (2009).
35. Hobmayer B, et al. Stemness in Hydra - a current perspective. The International journal of developmental biology 56, 509-517 (2012).
36. Steele RE. Developmental signaling in Hydra: what does it take to build a "simple" animal? Developmental biology 248, 199-219 (2002).
37. Vogg MC, Galliot B, Tsiairis CD. Model systems for regeneration: Hydra. Development 146, (2019).
38. Bode HR. Head regeneration in Hydra. Dev Dyn 226, 225-236 (2003).
39. Li Q, Yang H, Zhong TP. Regeneration across metazoan phylogeny: lessons from model organisms. J Genet Genomics 42, 57-70 (2015).
40. Hobmayer B, et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407, 186-189 (2000).
41. Chera S, et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Developmental cell 17, 279-289 (2009).
42. Lengfeld T, et al. Multiple Wnts are involved in Hydra organizer formation and regeneration. Developmental biology 330, 186-199 (2009).
43. Münder S, et al. Notch-signalling is required for head regeneration and tentacle patterning in Hydra. Developmental biology 383, 146-157 (2013).
44. Cazet JF, Cho A, Juliano CE. Generic injuries are sufficient to induce ectopic Wnt organizers in Hydra. Elife 10, (2021).
45. Petersen HO, et al. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration. Molecular biology and evolution 32, 1928-1947 (2015).
46. Bode HR. Axial patterning in hydra. Cold Spring Harbor perspectives in biology 1, a000463 (2009).
47. Gufler S, et al. beta-Catenin acts in a position-independent regeneration response in the simple eumetazoan Hydra. Developmental biology 433, 310-323 (2018).
48. Wenger Y, Buzgariu W, Perruchoud C, Loichot G, Galliot B. Generic and context-dependent gene modulations during <em>Hydra</em> whole body regeneration. bioRxiv, 587147 (2019).
49. Macwilliams HK. Hydra Transplantation Phenomena and the Mechanism of Hydra Head Regeneration .1. Properties of the Head Inhibition. Developmental biology 96, 217-238 (1983).
50. Macwilliams HK. Hydra Transplantation Phenomena and the Mechanism of Hydra Head Regeneration .2. Properties of the Head Activation. Developmental biology 96, 239-257 (1983).
51. McGough IJ, Vincent J-P. Exosomes in developmental signalling. Development 143, 2482 (2016).
52. Zhang L, Wrana JL. The emerging role of exosomes in Wnt secretion and transport. Current Opinion in Genetics & Development 27, 14-19 (2014).
53. C Thery AC, S Amigorena, G Raposo. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. John Wiley & Sons, Inc. (2006).
54. Rutter BD, Innes RW. Growing pains: addressing the pitfalls of plant extracellular vesicle research. New Phytol 228, 1505-1510 (2020).
55. Marchesano V, et al. Imaging inward and outward trafficking of gold nanoparticles in whole animals. ACS nano 7, 2431-2442 (2013).
56. Lommel M, et al. Hydra Mesoglea Proteome Identifies Thrombospondin as a Conserved Component Active in Head Organizer Restriction. Scientific Reports 8, (2018).
57. Kriventseva EV, et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res 47, D807-D811 (2019).
58. Huang XY, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. Bmc Genomics 14, (2013).
59. Siebert S, et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 365, 341-+ (2019).
60. Guder C, et al. An ancient Wnt-dickkopf antagonism in Hydra. Development 133, 901-911 (2006).
61. Augustin R, et al. Dickkopf related genes are components of the positional value gradient in hydra. Developmental Biology 296, 62-70 (2006).
62. Ziegler B, et al. The Wnt-specific astacin proteinase HAS-7 restricts head organizer formation in Hydra. Bmc Biol 19, (2021).
63. Vogg MC, et al. An evolutionarily-conserved Wnt3/beta-catenin/Sp5 feedback loop restricts head organizer activity in Hydra. Nature Communications 10, (2019).
64. Hoffmeister S, Schaller HC. A New Biochemical Marker for Foot-Specific Cell-Differentiation in Hydra. Roux Arch Dev Biol 194, 453-461 (1985).
65. Cruz L, Romero JAA, Iglesia RP, Lopes MH. Extracellular Vesicles: Decoding a New Language for Cellular Communication in Early Embryonic Development. Frontiers in cell and developmental biology 6, 94 (2018).
66. Buck AH, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nature communications 5, 5488 (2014).
67. Cai Q, He B, Weiberg A, Buck AH, Jin H. Small RNAs and extracellular vesicles: New mechanisms of cross-species communication and innovative tools for disease control. PLoS pathogens 15, e1008090 (2019).
68. Woith E, Fuhrmann G, Melzig MF. Extracellular Vesicles-Connecting Kingdoms. International journal of molecular sciences 20, (2019).
69. Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS microbiology reviews 43, 273-303 (2019).
70. Broun M, Gee L, Reinhardt B, Bode HR. Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132, 2907-2916 (2005).
71. Gee L, et al. beta-catenin plays a central role in setting up the head organizer in hydra. Dev Biol 340, 116-124 (2010).
72. Munder S, et al. Notch-signalling is required for head regeneration and tentacle patterning in Hydra. Dev Biol 383, 146-157 (2013).
73. Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 8, (2019).
74. Jeppesen DK, et al. Reassessment of Exosome Composition. Cell 177, 428-445 e418 (2019).
75. Dupre C, Yuste R. Non-overlapping Neural Networks in Hydra vulgaris. Curr Biol 27, 1085-1097 (2017).
76. Théry C AS, Raposo G, Clayton A. . Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids In: Curr Protoc Cell Biol.) (2006).
77. Cleland AN, Fraikin, J.-L., Meinhold, P., and Monzon, F. 6:20. Nanoparticle characterization—one size does not fit all: nanoparticle size analysis for nanomedicine applications. . Drug Dev Deliv, 20 (2016).
78. Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
79. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification (vol 34, pg 525, 2016). Nat Biotechnol 34, 888-888 (2016).