1. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A and Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016; 66: 443-459. 2016/09/13. DOI: 10.3322/caac.21357.
2. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; 127: 2375-2390. 2016/03/17. DOI: 10.1182/blood-2016-01-643569.
3. Johnson PW, Rohatiner AZ, Whelan JS, Price CG, Love S, Lim J, et al. Patterns of survival in patients with recurrent follicular lymphoma: a 20-year study from a single center. J Clin Oncol. 1995; 13: 140-147. 1995/01/01. DOI: 10.1200/jco.1995.13.1.140.
4. Marcus R, Imrie K, Belch A, Cunningham D, Flores E, Catalano J, et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood. 2005; 105: 1417-1423. 2004/10/21. DOI: 10.1182/blood-2004-08-3175.
5. Salles G, Seymour JF, Offner F, López-Guillermo A, Belada D, Xerri L, et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet. 2011; 377: 42-51. 2010/12/24. DOI: 10.1016/s0140-6736(10)62175-7.
6. Casulo C, Byrtek M, Dawson KL, Zhou X, Farber CM, Flowers CR, et al. Early Relapse of Follicular Lymphoma After Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone Defines Patients at High Risk for Death: An Analysis From the National LymphoCare Study. J Clin Oncol. 2015; 33: 2516-2522. 2015/07/01. DOI: 10.1200/jco.2014.59.7534.
7. Pastore A, Jurinovic V, Kridel R, Hoster E, Staiger AM, Szczepanowski M, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015; 16: 1111-1122. 2015/08/11. DOI: 10.1016/s1470-2045(15)00169-2.
8. Huet S, Tesson B, Jais JP, Feldman AL, Magnano L, Thomas E, et al. A gene-expression profiling score for prediction of outcome in patients with follicular lymphoma: a retrospective training and validation analysis in three international cohorts. Lancet Oncol. 2018; 19: 549-561. 2018/02/25. DOI: 10.1016/s1470-2045(18)30102-5.
9. Langfelder P and Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008; 9: 559. 2008/12/31. DOI: 10.1186/1471-2105-9-559.
10. Langfelder P and Horvath S. Fast R Functions for Robust Correlations and Hierarchical Clustering. J Stat Softw. 2012; 46 2012/10/11.
11. Chen Y, Li ZY, Zhou GQ and Sun Y. An Immune-Related Gene Prognostic Index for Head and Neck Squamous Cell Carcinoma. Clin Cancer Res. 2021; 27: 330-341. 2020/10/25. DOI: 10.1158/1078-0432.Ccr-20-2166.
12. Niemira M, Collin F, Szalkowska A, Bielska A, Chwialkowska K, Reszec J, et al. Molecular Signature of Subtypes of Non-Small-Cell Lung Cancer by Large-Scale Transcriptional Profiling: Identification of Key Modules and Genes by Weighted Gene Co-Expression Network Analysis (WGCNA). Cancers (Basel). 2019; 12 2019/12/28. DOI: 10.3390/cancers12010037.
13. Liu H, Liu M, You H, Li X and Li X. Oncogenic Network and Hub Genes for Natural Killer/T-Cell Lymphoma Utilizing WGCNA. Front Oncol. 2020; 10: 223. 2020/03/21. DOI: 10.3389/fonc.2020.00223.
14. Gautier L, Cope L, Bolstad BM and Irizarry RA. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004; 20: 307-315. 2004/02/13. DOI: 10.1093/bioinformatics/btg405.
15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43: e47. 2015/01/22. DOI: 10.1093/nar/gkv007.
16. Yu G, Wang LG, Han Y and He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012; 16: 284-287. 2012/03/30. DOI: 10.1089/omi.2011.0118.
17. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102: 15545-15550. 2005/10/04. DOI: 10.1073/pnas.0506580102.
18. Walter W, Sánchez-Cabo F and Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015; 31: 2912-2914. 2015/05/13. DOI: 10.1093/bioinformatics/btv300.
19. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13: 2498-2504. 2003/11/05. DOI: 10.1101/gr.1239303.
20. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015; 12: 453-457. 2015/03/31. DOI: 10.1038/nmeth.3337.
21. Silva A, Bassim S, Sarkozy C, Mottok A, Lackraj T, Jurinovic V, et al. Convergence of risk prediction models in follicular lymphoma. Haematologica. 2019; 104: e252-e255. 2019/01/05. DOI: 10.3324/haematol.2018.209031.
22. Tsujimoto Y, Finger LR, Yunis J, Nowell PC and Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984; 226: 1097-1099. 1984/11/30. DOI: 10.1126/science.6093263.
23. Green MR. Chromatin modifying gene mutations in follicular lymphoma. Blood. 2018; 131: 595-604. 2017/11/22. DOI: 10.1182/blood-2017-08-737361.
24. Li H, Kaminski MS, Li Y, Yildiz M, Ouillette P, Jones S, et al. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood. 2014; 123: 1487-1498. 2014/01/18. DOI: 10.1182/blood-2013-05-500264.
25. Yildiz M, Li H, Bernard D, Amin NA, Ouillette P, Jones S, et al. Activating STAT6 mutations in follicular lymphoma. Blood. 2015; 125: 668-679. 2014/11/28. DOI: 10.1182/blood-2014-06-582650.
26. Okosun J, Wolfson RL, Wang J, Araf S, Wilkins L, Castellano BM, et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nat Genet. 2016; 48: 183-188. 2015/12/23. DOI: 10.1038/ng.3473.
27. Ying ZX, Jin M, Peterson LF, Bernard D, Saiya-Cork K, Yildiz M, et al. Recurrent Mutations in the MTOR Regulator RRAGC in Follicular Lymphoma. Clin Cancer Res. 2016; 22: 5383-5393. 2016/11/03. DOI: 10.1158/1078-0432.Ccr-16-0609.
28. Linke F, Harenberg M, Nietert MM, Zaunig S, von Bonin F, Arlt A, et al. Microenvironmental interactions between endothelial and lymphoma cells: a role for the canonical WNT pathway in Hodgkin lymphoma. Leukemia. 2017; 31: 361-372. 2016/08/19. DOI: 10.1038/leu.2016.232.
29. Baekkevold ES, Yamanaka T, Palframan RT, Carlsen HS, Reinholt FP, von Andrian UH, et al. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med. 2001; 193: 1105-1112. 2001/05/09. DOI: 10.1084/jem.193.9.1105.
30. Till KJ, Lin K, Zuzel M and Cawley JC. The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood. 2002; 99: 2977-2984. 2002/04/04. DOI: 10.1182/blood.v99.8.2977.
31. Höpken UE, Foss HD, Meyer D, Hinz M, Leder K, Stein H, et al. Up-regulation of the chemokine receptor CCR7 in classical but not in lymphocyte-predominant Hodgkin disease correlates with distinct dissemination of neoplastic cells in lymphoid organs. Blood. 2002; 99: 1109-1116. 2002/02/07. DOI: 10.1182/blood.v99.4.1109.
32. Husson H, Carideo EG, Cardoso AA, Lugli SM, Neuberg D, Munoz O, et al. MCP-1 modulates chemotaxis by follicular lymphoma cells. Br J Haematol. 2001; 115: 554-562. 2001/12/12. DOI: 10.1046/j.1365-2141.2001.03145.x.
33. Amé-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 2007; 109: 693-702. 2006/09/21. DOI: 10.1182/blood-2006-05-020800.
34. Förster R, Davalos-Misslitz AC and Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008; 8: 362-371. 2008/04/02. DOI: 10.1038/nri2297.
35. Rizeq B and Malki MI. The Role of CCL21/CCR7 Chemokine Axis in Breast Cancer Progression. Cancers (Basel). 2020; 12 2020/04/29. DOI: 10.3390/cancers12041036.
36. Zhou R, Sun J, He C, Huang C and Yu H. CCL19 suppresses gastric cancer cell proliferation, migration, and invasion through the CCL19/CCR7/AIM2 pathway. Hum Cell. 2020; 33: 1120-1132. 2020/06/22. DOI: 10.1007/s13577-020-00375-1.
37. Zhang X, Wang Y, Cao Y, Zhang X and Zhao H. Increased CCL19 expression is associated with progression in cervical cancer. Oncotarget. 2017; 8: 73817-73825. 2017/11/02. DOI: 10.18632/oncotarget.17982.
38. O'Connor T, Zhou X, Kosla J, Adili A, Garcia Beccaria M, Kotsiliti E, et al. Age-Related Gliosis Promotes Central Nervous System Lymphoma through CCL19-Mediated Tumor Cell Retention. Cancer Cell. 2019; 36: 250-267.e259. 2019/09/19. DOI: 10.1016/j.ccell.2019.08.001.
39. Yang J, Wang S, Zhao G and Sun B. Effect of chemokine receptors CCR7 on disseminated behavior of human T cell lymphoma: clinical and experimental study. J Exp Clin Cancer Res. 2011; 30: 51. 2011/05/10. DOI: 10.1186/1756-9966-30-51.
40. Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol. 2002; 169: 424-433. 2002/06/22. DOI: 10.4049/jimmunol.169.1.424.
41. Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol. 2007; 8: 1255-1265. 2007/09/26. DOI: 10.1038/ni1513.
42. Xuan W, Qu Q, Zheng B, Xiong S and Fan GH. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines. J Leukoc Biol. 2015; 97: 61-69. 2014/11/02. DOI: 10.1189/jlb.1A0314-170R.
43. Wahlin BE, Aggarwal M, Montes-Moreno S, Gonzalez LF, Roncador G, Sanchez-Verde L, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1--positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010; 16: 637-650. 2010/01/14. DOI: 10.1158/1078-0432.Ccr-09-2487.
44. Smeltzer JP, Jones JM, Ziesmer SC, Grote DM, Xiu B, Ristow KM, et al. Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma. Clin Cancer Res. 2014; 20: 2862-2872. 2014/04/15. DOI: 10.1158/1078-0432.Ccr-13-2367.
45. Galati D, Corazzelli G, De Filippi R and Pinto A. Dendritic cells in hematological malignancies. Crit Rev Oncol Hematol. 2016; 108: 86-96. 2016/12/10. DOI: 10.1016/j.critrevonc.2016.10.006.
46. Chang KC, Huang GC, Jones D and Lin YH. Distribution patterns of dendritic cells and T cells in diffuse large B-cell lymphomas correlate with prognoses. Clin Cancer Res. 2007; 13: 6666-6672. 2007/11/17. DOI: 10.1158/1078-0432.Ccr-07-0504.
47. Tudor CS, Bruns H, Daniel C, Distel LV, Hartmann A, Gerbitz A, et al. Macrophages and dendritic cells as actors in the immune reaction of classical Hodgkin lymphoma. PLoS One. 2014; 9: e114345. 2014/12/04. DOI: 10.1371/journal.pone.0114345.
48. Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y and Tamada K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol. 2018; 36: 346-351. 2018/03/06. DOI: 10.1038/nbt.4086.
49. Cox MC, Lapenta C and Santini SM. Advances and perspectives of dendritic cell-based active immunotherapies in follicular lymphoma. Cancer Immunol Immunother. 2020; 69: 913-925. 2020/04/24. DOI: 10.1007/s00262-020-02577-w.
50. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma. N Engl J Med. 2018; 379: 1711-1721. 2018/11/01. DOI: 10.1056/NEJMoa1807315.