1. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 113, 5322-5363 (2013).
2. Schultz, D. M. & Yoon, T. P. Solar Synthesis: Prospects in Visible Light Photocatalysis. Science 343, 1239176 (2014).
3. Romero, N. A. & Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 116, 10075-10166 (2016).
4. Twilton, J. et al. The merger of transition metal and photocatalysis. Nature Reviews Chemistry 1, 0052 (2017).
5. Stephenson, C. R. J., Yoon, T. P., MacMillan, D. W. C. Eds., Visible Light Photocatalysis in Organic Chemistry (Wiley, 2018).
6. Terrett, J. A., Cuthbertson, J. D., Shurtleff, V. W. & MacMillan, D. W. C. Switching on elusive organometallic mechanisms with photoredox catalysis. Nature 524, 330-334 (2015).
7. Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D. W. C. Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science 355, 380-385 (2017).
8. Le, C., Liang, Y., Evans, R. W., Li, X. & MacMillan, D. W. C. Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79-83 (2017).
9. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433-436 (2014).
10. Johnston, C. P., Smith, R. T., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp3–sp3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322-325 (2016).
11. Yang, L. et al. Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angew. Chem. Int. Ed. 57, 1968-1972 (2018).
12. Lu, J. et al. Donor–Acceptor Fluorophores for Energy-Transfer-Mediated Photocatalysis. J. Am. Chem. Soc. 140, 13719-13725 (2018).
13. Luo, J. & Zhang, J. Donor–Acceptor Fluorophores for Visible-Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic C(sp3)–C(sp2) Cross-Coupling. ACS Catalysis 6, 873-877 (2016).
14. Creutz, S. E., Lotito, K. J., Fu, G. C. & Peters, J. C. Photoinduced Ullmann C–N Coupling: Demonstrating the Viability of a Radical Pathway. Science 338, 647-651 (2012).
15. Kainz, Q. M. et al. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science 351, 681-684 (2016).
16. Torres, G. M., Liu, Y. & Arndtsen, B. A. A dual light-driven palladium catalyst: Breaking the barriers in carbonylation reactions. Science 368, 318-323 (2020).
17. Xia, Z. et al. Photosensitized oxidative addition to gold(i) enables alkynylative cyclization of o-alkylnylphenols with iodoalkynes. Nature Chemistry 11, 797-805 (2019).
18. Cheng, W.-M. & Shang, R. Transition Metal-Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives. ACS Catalysis 10, 9170-9196 (2020).
19. Walton, J. W. & Wilkinson, L. A. in Organometallic Chemistry: π-Coordinated arene metal complexes and catalysis Vol. 42, 125-171 (The Royal Society of Chemistry, 2019).
20. MacKenzie, I. A. et al. Discovery and characterization of an acridine radical photoreductant. Nature 580, 76-80 (2020).
21. Vega-Peñaloza, A., Mateos, J., Companyó, X., Escudero-Casao, M. & Dell'Amico, L. A Rational Approach to Organo-Photocatalysis: Novel Designs and Structure-Property Relationships. Angew. Chem. Int. Ed. 60, 1082-1097 (2021).
22. Arias-Rotondo, D. M. & McCusker, J. K. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803-5820 (2016).
23. Loudet, A. & Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 107, 4891-4932 (2007).
24. Han, R. & Hillhouse, G. L. Carbon−Oxygen Reductive-Elimination from Nickel(II) Oxametallacycles and Factors That Control Formation of Ether, Aldehyde, Alcohol, or Ester Products. J. Am. Chem. Soc. 119, 8135-8136 (1997).
25. Yang, L., Simionescu, R., Lough, A. & Yan, H. Some observations relating to the stability of the BODIPY fluorophore under acidic and basic conditions. Dyes and Pigments 91, 264-267 (2011).
26. Wang, M., Vicente, M. G. H., Mason, D. & Bobadova-Parvanova, P. Stability of a Series of BODIPYs in Acidic Conditions: An Experimental and Computational Study into the Role of the Substituents at Boron. ACS Omega 3, 5502-5510 (2018).
27. Ma, P., Wang, S. & Chen, H. Reactivity of Transition-Metal Complexes in Excited States: C–O Bond Coupling Reductive Elimination of a Ni(II) Complex Is Elicited by the Metal-to-Ligand Charge Transfer State. ACS Catalysis 10, 1-6 (2020).
28. Tsou, T. T. & Kochi, J. K. Mechanism of oxidative addition. Reaction of nickel(0) complexes with aromatic halides. J. Am. Chem. Soc. 101, 6319-6332 (1979).
29. Diccianni, J. B. & Diao, T. Mechanisms of Nickel-Catalyzed Cross-Coupling Reactions. Trends in Chemistry 1, 830-844 (2019).
30. Malik, J. A., Madani, A., Pieber, B. & Seeberger, P. H. Evidence for Photocatalyst Involvement in Oxidative Additions of Nickel-Catalyzed Carboxylate O-Arylations. J. Am. Chem. Soc. 142, 11042-11049 (2020).
31. Giri, R. & Hartwig, J. F. Cu(I)−Amido Complexes in the Ullmann Reaction: Reactions of Cu(I)−Amido Complexes with Iodoarenes with and without Autocatalysis by CuI. J. Am. Chem. Soc. 132, 15860-15863 (2010).
32. Mohadjer Beromi, M. et al. Mechanistic Study of an Improved Ni Precatalyst for Suzuki–Miyaura Reactions of Aryl Sulfamates: Understanding the Role of Ni(I) Species. J. Am. Chem. Soc. 139, 922-936 (2017).
33. Yang, L. et al. Light-Promoted Nickel Catalysis: Etherification of Aryl Electrophiles with Alcohols Catalyzed by a NiII-Aryl Complex. Angew. Chem. Int. Ed. 59, 12714-12719 (2020).
34. Tian, L., Till, N. A., Kudisch, B., MacMillan, D. W. C. & Scholes, G. D. Transient Absorption Spectroscopy Offers Mechanistic Insights for an Iridium/Nickel-Catalyzed C–O Coupling. J. Am. Chem. Soc. 142, 4555-4559 (2020).
35. Huang, Z. Y., Liu, Z. & Zhou, J. R. An Enantioselective, Intermolecular alpha-Arylation of Ester Enolates To Form Tertiary Stereocenters. J. Am. Chem. Soc. 133, 15882-15885 (2011).
36. Huang, Z. et al. Weak Arene C-H center dot center dot center dot O Hydrogen Bonding in Palladium-Catalyzed Arylation and Vinylation of Lactones. Angew. Chem.Int. Ed. 52, 5807-5812 (2013).
37. Huang, Z. et al. Arene CH-O Hydrogen Bonding: A Stereocontrolling Tool in Palladium-Catalyzed Arylation and Vinylation of Ketones. Angew. Chem.Int. Ed. 52, 4906-4911 (2013).
38. Uehling, M. R., King, R. P., Krska, S. W., Cernak, T. & Buchwald, S. L. Pharmaceutical diversification via palladium oxidative addition complexes. Science 363, 405-4083 (2019).