[1] Bravo-Merodio, L.; Williams J.A.; Gkoutos G.V.; Acharjee, A. -Omics biomarker identification pipeline for translational medicine. J Transl Med 2019, 17, 155. Doi: 10.1186/s12967-019-1912-5.
[2] Cascella, R.; Strafella, C.; Longo, G; Maccarone, M.; Borgiani, P.; Sangiuolo, F.; Novelli, G.; Giardina, E. Pharmacogenomics of multifactorial diseases: a focus on psoriatic arthritis. Pharmacogenomics 2016; 17, 943–951. Doi: 10.2217/pgs.16.20.
[3] Stocchi, L; Cascella, R; Zampatti, S, Pirazzoli, A; Novelli, G; Giardina, E. The Pharmacogenomic HLA Biomarker Associated to Adverse Abacavir Reactions: Comparative Analysis of Different Genotyping Methods. Curr Genomics 2012, 13, 314‐320. Doi: 10.2174/138920212800793311.
[4] Docampo, E; Giardina, E; Riveira-Muñoz, E; de Cid, R.; Escaramís, G.; Perricone, C.; Fernández-Sueiro, J.L., Maymó, J.; González-Gay, M.A.; Blanco, F.J.; Hüffmeier, U.; Lisbona, M.P.; Martín, J.; Carracedo, A.; Reis, A.; Rabionet, R.; Novelli, G.; Estivill, X. Deletion of LCE3C and LCE3B is a susceptibility factor for psoriatic arthritis: a study in Spanish and Italian populations and meta-analysis. Arthritis Rheum 2011, 63, 1860‐1865. Doi: 10.1002/art.30340.
[5] Giardina, E.; Capon, F.; De Rosa, M.C.; Mango, R.; Zambruno, R.; Orecchia, A.; Chimenti, S.; Giardina, B.; Novelli, G. Characterization of the loricrin (LOR) gene as a positional candidate for the PSORS4 psoriasis susceptibility locus. Ann. Hum. Genet. 2004, 68, 639‐645. Doi: 10.1046/j.1529-8817.2004.00118.x.
[6] Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 - A systematic review. Life Sci 2020, 254, 117788. Doi: 10.1016/j.lfs.2020.117788.
[7] Strafella, C.; Caputo, V.; Termine, A.; Barati, S.; Gambardella, S.; Borgiani, P.; Caltagirone, C.; Novelli, G.; Giardina, E.; Cascella, R. Analysis of ACE2 Genetic Variability among Populations Highlights a Possible Link with COVID-19-Related Neurological Complications. Genes 2020, 11, 741. Doi: 10.3390/genes11070741.
[8] Costa Sa AC, Madsen H, Brown JR. Shared Molecular Signatures Across Neurodegenerative Diseases and Herpes Virus Infections Highlights Potential Mechanisms for Maladaptive Innate Immune Responses. Sci Rep 2019, 9, 8795. Doi:10.1038/s41598-019-45129-8.
[9] Sochocka M, Zwolińska K, Leszek J. The Infectious Etiology of Alzheimer's Disease. Curr Neuropharmacol 2017, 15, 996-1009. Doi: 10 .2174/1570159X15666170313122937.
[10] Strafella, C.; Caputo, V.; Galota, M.R.; Zampatti, S.; Marella, G.; Mauriello, S.; Cascella, R.; Giardina, E. Application of Precision Medicine in Neurodegenerative Diseases. Front Neurol 2018, 9, 701. Doi: 10.3389/fneur.2018.00701.
[11] Garbers, C; Heink, S; Korn, T, Rose-John S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov 2018, 17, 395-412. Doi: 10.1038/nrd.2018.45.
[12] Murakami, M.; Kamimura, D.; Hirano, T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019, 50, 812-831. Doi: 10.1016/j.immuni.2019.03.027.
[13] Salvi, R.; Patankar, P. Emerging pharmacotherapies for COVID-19. Biomed Pharmacother 2020, 128, 110267. Doi:10.1016/j.biopha.2020.110267.
[14] Ulhaq, Z.S., Soraya, G.V. Interleukin-6 as a potential biomarker of COVID-19 progression. Med Mal Infect 2020, 50, 382-383. Doi:10.1016/j.medmal.2020.04.002.
[15] Redenšek, S.; Flisar, D.; Kojović, M.; Kramberger, M.G.; Georgiev, D.; Pirtošek, Z.; Trošt, M.; Dolžan, V. Genetic variability of inflammation and oxidative stress genes does not play a major role in the occurrence of adverse events of dopaminergic treatment in Parkinson's disease. J Neuroinflammation 2019, 16, 50. Doi:10.1186/s12974-019-1439-y.
[16] Mun, M.J.; Kim, J.H.; Choi, J.Y.; Jang, W.C. Genetic polymorphisms of interleukin genes and the risk of Alzheimer's disease: An update meta-analysis. Meta Gene. 2016, 8, 1-10. Doi:10.1016/j.mgene.2016.01.001.
[17] Woo, P.; Humphries, S.E. IL-6 polymorphisms: a useful genetic tool for inflammation research?. J Clin Invest 2013, 123, 1413-1414. Doi:10.1172/JCI67221.
[18] Shah, T.; Zabaneh, D.; Gaunt, T.; Swerdlow, D.I.; Shah, S.; Talmud, P.J; Day, I.N.; Whittaker, J.; Holmes, M.V.; Sofat, R.; Humphries, S.E.; Kivimaki, M.; Kumari, M.; Hingorani, A.D.; Casas, J.P. Gene-centric analysis identifies variants associated with interleukin-6 levels and shared pathways with other inflammation markers. Circ Cardiovasc Genet, 2013, 6, 163-170. Doi: 10.1161/CIRCGENETICS.112.964254.
[19] Cunningham, F.; Achuthan, P.; Akanni, W.; Allen, J.; Amode, M.R.; Armean, I.M.; Bennett, R.; Bhai, J.; Billis, K.; Boddu, S.; Cummins, C.; Davidson, C.; Dodiya, K.J.; Gall, A.; Girón, C.G.; Gil, L.; Grego, T.; Haggerty, L.; Haskell, E.; Hourlier, T.; Izuogu, O.G.; Janacek, S.H.; Juettemann, T.; Kay, M.; Laird, M.R.; Lavidas, I.; Liu, Z.; Loveland, J.E.; Marugán, J.C.; Maurel, T.; McMahon, A.C.; Moore, B.; Morales, J.; Mudge, J.M.; Nuhn, M.; Ogeh, D.; Parker, A.; Parton, A.; Patricio, M.; Abdul Salam, A.I.; Schmitt, B.M.; Schuilenburg, H.; Sheppard, D.; Sparrow, H.; Stapleton, E.; Szuba, M.; Taylor, K.; Threadgold, G.; Thormann, A.; Vullo, A.; Walts, B.; Winterbottom, A.; Zadissa, A.; Chakiachvili, M.; Frankish, A.; Hunt, S.E.; Kostadima, M.; Langridge, N.; Martin, F.J.; Muffato, M.; Perry. E.; Ruffier, M.; Staines, D.M.; Trevanion, S.J.; Aken, B.L.; Yates, A.D.; Zerbino, D.R., Flicek, P. Ensembl 2019. Nucleic Acids Res 2019, 47(D1), D745-D751.
[20] 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; Abecasis, G.R. A global reference for human genetic variation. Nature 2015, 526, 68-74. Doi: 10.1038/nature15393.
[21] Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.;Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; Gauthier, LD.; Brand, H.; Solomonson, M.; Watts, N.A.; Rhodes, D.; Singer-Berk, M.; England, E.M.; Seaby, E.G.; Kosmicki, J.A.; Walters, R.K.; Tashman, K.; Farjoun, Y.; Banks, E.; Poterba, T.; Wang, A; Seed, C.; Whiffin, N.; Chong J.X.; Samocha, K.E.; Pierce-Hoffman, E.; Zappala, Z.; O'Donnell-Luria A.H., Minikel, E.V., Weisburd, B., Lek, M.; Ware, J.S.; Vittal, C.; Armean, I.M.; Bergelson, L; Cibulskis, K.; Connolly, K.M.; Covarrubias, M.; Donnelly, S.; Ferriera, S.; Gabriel, S.; Gentry, J.; Gupta, N.; Jeandet, T.; Kaplan, D.; Llanwarne, C; Munshi, R.; Novod, S., Petrillo, N.; Roazen, D.; Ruano-Rubio, V.; Saltzman, A.; Schleicher, M.; Soto, J.; Tibbetts, K.; Tolonen, C; Wade G.; Talkowski, M.E.; Genome Aggregation Database Consortium; Neale, B.M.; Daly, M.J.; MacArthur, D.G. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434-443. Doi: 10.1038/s41586-020-2308-7.
[22] Knaus, B.J.; Grunwald, N.J. VCFR: A package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour 2017, 17, 44-53. Doi: 10.1111/1755-0998.12549.
[23] Ravasio, V.; Ritelli, M.; Legati, A.; Giacopuzzi, E. GARFIELD-NGS: Genomic variants filtering by deep learning models in NGS. Bioinformatics 2018, 34, 3038-3040. Doi: 10.1093/bioinformatics/bty303.
[24] Laskowski, R.A., Stephenson, J.D.; Sillitoe, I.; Orengo, C.A.; Thornton, J.M. VarSite: Disease variants and protein structure. Protein Sci 2020, 29,111-119. Doi: 10.1002/pro.3746.
[25] Desmet, F.O.; Hamroun, D.; Lalande, M.; Collod-Béroud, G.; Claustres, M.; Béroud, C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 2009, 37, e67. Doi: 10.1093/nar/gkp215.
[26] UniProt Consortium. UniProt: A worldwide hub of pro- tein knowledge. Nucleic Acids Res 2019, 8, D506–D515. Doi: 10.1093/nar/gky1049.
[27] Emilsson, V.; Ilkov, M.,; Lamb, J.R.; Finkel, N.; Gudmundsson, E.F.; Pitts, R.; Hoover, H.; Gudmundsdottir, V.; Horman, SR; Aspelund, T.; Shu L.; Trifonov, V.; Sigurdsson, S.; Manolescu, A.; Zhu, J.; Olafsson, Ö.; Jakobsdottir, J.; Lesley, S.A.; To, J.; Zhang, J.; Harris, T.B.; Launer, L.J., Zhang, B.; Eiriksdottir G.; Yang, X.; Orth, A.P.; Jennings, L.L.; Gudnason, V. Co-regulatory networks of human serum proteins link genetics to disease. Science 2018, 361, 769-773. Doi: 10.1126/science.aaq1327.
[28] Wang, Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020; 92, 568-576. Doi: 10.1002/jmv.25748.
[29] Akhmerov, A.; Marbán, E. COVID-19 and the Heart. Circ Res 2020, 126, 1443-1455. Doi:10.1161/CIRCRESAHA.120.317055.
[30] Zhang, C.; Shi, L.; Wang, F.S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 2020, 5, 428-430. Doi:10.1016/S2468-1253(20)30057-1.
[31] Alqahtani, S.A.; Schattenberg, J.M. Liver injury in COVID-19: The current evidence. United European Gastroenterol J 2020, 8, 509-519. Doi:10.1177/2050640620924157.
[32] Li, Y.C., Bai, W.Z., Hashikawa, T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020, 92, 552-555. Doi: 10.1002/jmv.25728.
[33] Helms, J.; Kremer, S.; Merdji, H; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; Anheim, M.; Meziani, F. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med 2020, 382, 2268-2270. Doi: 10.1056/NEJMc2008597.
[34] Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 2020, 55, 105954.
[35] Luo, P.; Liu, Y.; Qiu, L.; Liu, X.; Liu, D.; Li, J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 2020, 92, 814-818. Doi:10.1002/jmv.25801.