Acevedo FE, Peiffer M, Ray S, Tan CW, Felton GW (2021) Silicon-mediated enhancement of herbivore resistance in agricultural crops. Front Plant Sci 12:631824. https://doi.org/10.3389/fpls.2021.631824
Adamo SA, Davies G, Easy R, Kovalko I, Turnbull KF (2016) Reconfiguration of the immune system network during food limitation in the caterpillar Manduca sexta. J Exp Biol 219:706-718. https://doi.org/10.1242/jeb.132936
Andama JB, Mujiono K, Hojo Y, Shinya T, Galis I (2020) Nonglandular silicified trichomes are essential for rice defense against chewing herbivores. Plant Cell Environ 43:2019-2032. https://doi.org/10.1111/pce.13775
Beckage NE, Riddiford LM (1978) Developmental interactions between the tobacco hornworm Manduca sexta and its braconid parasite Apanteles congregatus. Entomol Exp Appl 23:139-151. https://doi.org/10.1111/j.1570-7458.1978.tb03016.x
Bernays EA (1997) Feeding by lepidopteran larvae is dangerous. Ecol Entomol 22:121-123. https://doi.org/10.1046/j.1365-2311.1997.00042.x
Biru FN, Islam T, Cibils-Stewart X, Cazzonelli CI, Elbaum R, Johnson SN (2021) Anti-herbivore silicon defences in a model grass are greatest under Miocene levels of atmospheric CO2. Global Change Biol 27:2959-2969. https://doi.org/10.1111/gcb.15619
Boevé J-L, Schaffner U (2003) Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134:104-111. https://doi.org/10.1007/s00442-002-1092-4
Carmona D, Lajeunesse MJ, Johnson MTJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358-367. https://doi.org/10.1111/j.1365-2435.2010.01794.x
Cornell JC, Stamp NE, Bowers MD (1987) Developmental change in aggregation, defense and escape behavior of buckmoth caterpillars, Hemileuca lucina (Saturniidae). Behav Ecol Sociobiol 20:383-388. https://doi.org/10.1007/BF00302980
Cotter SC, Myatt JP, Benskin CM, Wilson K (2008) Selection for cuticular melanism reveals immune function and life-history trade-offs in Spodoptera littoralis. J Evol Biol 21:1744-1754. https://doi.org/10.1111/j.1420-9101.2008.01587.x
Dalin P, Ågren J, Björkman C, Huttunen P, Kärkkäinen K (2008) Leaf trichome formation and plant resistance to herbivory. In: Schaller A (ed) Induced Plant Resistance to Herbivory. Springer, Dordrecht, pp 89-105
Diamond SE, Kingsolver JG (2011) Host plant quality, selection and trade-offs shape the immunity of Manduca sexta. Proc R Soc B 278:289-297. https://doi.org/10.1098/rspb.2010.1137
Eleftherianos I, Revenis C (2011) Role and importance of phenoloxidase in insect hemostasis. J Innate Immun 3:28-33. https://doi.org/10.1159/000321931
Forkner RE, Hunter MD (2000) What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology 81:1588-1600. https://doi.org/10.1890/0012-9658(2000)081[1588:WGUMCD]2.0.CO;2
Frew A, Powell JR, Hiltpold I, Allsopp PG, Sallam N, Johnson SN (2017) Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore. Soil Biol Biochem 112:117-126. http://dx.doi.org/10.1016/j.soilbio.2017.05.008
Garvey M, Bredlau J, Kester K, Creighton C, Kaplan I (2021) Toxin or medication? Immunotherapeutic effects of nicotine on a specialist caterpillar. Funct Ecol 35:614-626. https://doi.org/10.1111/1365-2435.13743
Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145-169
Gherlenda AN, Haigh AM, Moore BD, Johnson SN, Riegler M (2016) Climate change, nutrition and immunity: Effects of elevated CO2 and temperature on the immune function of an insect herbivore. J Insect Physiol 85:57-64. https://doi.org/10.1016/j.jinsphys.2015.12.002
González-Santoyo I, Córdoba-Aguilar A (2012) Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl 142:1-16. https://doi.org/10.1111/j.1570-7458.2011.01187.x
Greeney HF, Dyer LA, Smilanich AM (2012) Feeding by lepidopteran larvae is dangerous: A review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebr Surviv J 9:7-34
Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38:251-273. https://doi.org/10.1146/annurev.en.38.010193.001343
Hall CR, Mikhael M, Hartley SE, Johnson SN (2020) Elevated atmospheric CO2 suppresses jasmonate and silicon‐based defences without affecting herbivores. Funct Ecol 34:993-1002. https://doi.org/10.1111/1365-2435.13549
Hall CR, Rowe RC, Mikhael M, Read E, Hartley SE, Johnson SN (2021) Plant silicon application alters leaf alkaloid concentrations and impacts parasitoids more adversely than their aphid hosts. Oecologia 196:145-154. https://doi.org/10.1007/s00442-021-04902-1
Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283-335
Iltis C, Martel G, Thiéry D, Moreau J, Louâpre P (2018) When warmer means weaker: high temperatures reduce behavioural and immune defences of the larvae of a major grapevine pest. J Pest Sci 91:1315-1326. https://doi.org/10.1007/s10340-018-0992-y
Islam T, Moore BD, Johnson SN (2020) Novel evidence for systemic induction of silicon defences in cucumber following attack by a global insect herbivore. Ecol Entomol 45:1373-1381. https://doi.org/10.1111/een.12922
Islam T, Moore BD, Johnson SN (2021) Silicon suppresses a ubiquitous mite herbivore and promotes natural enemy attraction by altering plant volatile blends. J Pest Sci. https://doi.org/10.1007/s10340-021-01384-1
Johnson SN, Hartley SE, Ryalls JMW, Frew A, Hall CR (2021) Targeted plant defense: silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores. Ecology 102:e03250. https://doi.org/10.1002/ecy.3250
Johnson SN, Reynolds OL, Gurr GM, Esveld JL, Moore BD, Tory GJ, Gherlenda AN (2019) When resistance is futile, tolerate instead: silicon promotes plant compensatory growth when attacked by above- and belowground herbivores. Biol Lett 15:20190361. https://doi.org/10.1098/rsbl.2019.0361
Johnson SN, Rowe RC, Hall CR (2020) Silicon is an inducible and effective herbivore defence against Helicoverpa punctigera (Lepidoptera: Noctuidae) in soybean. Bull Entomol Res 110:417-422. https://doi.org/10.1017/S0007485319000798
Jones CM, Parry H, Tay WT, Reynolds DR, Chapman JW (2019) Movement ecology of pest Helicoverpa: implications for ongoing spread. Annu Rev Entomol 64:277-295. https://doi.org/10.1146/annurev-ento-011118-111959
Koricheva J (2002) Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology 83:176-190. https://doi.org/10.1890/0012-9658(2002)083[0176:MAOSOV]2.0.CO;2
Kvedaras OL, Byrne MJ, Coombes NE, Keeping MG (2009) Influence of plant silicon and sugarcane cultivar on mandibular wear in the stalk borer Eldana saccharina. Agric For Entomol 11:301-306. https://doi.org/10.1111/j.1461-9563.2009.00430.x
Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295-1309. https://doi.org/10.1016/s0965-1748(02)00092-9
Liu J, Zhu J, Zhang P et al. (2017) Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front Plant Sci 8:1265. https://doi.org/10.3389/fpls.2017.01265
Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392-397. https://doi.org/10.1016/j.tplants.2006.06.007
Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DK, Sonah H, Deshmukh R (2020) Significance of silicon uptake, transport, and deposition in plants. J Exp Bot 71:6703–6718. https://doi.org/10.1093/jxb/eraa301
Massey FP, Ennos AR, Hartley SE (2007) Herbivore specific induction of silica-based plant defences. Oecologia 152:677-683. https://doi.org/10.1007/s00442-007-0703-5
Massey FP, Hartley SE (2009) Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. J Anim Ecol 78:281-291. https://doi.org/10.1111/j.1365-2656.2008.01472.x
Moore BD, Johnson SN (2016) Get tough, get toxic, or get a bodyguard: Identifying candidate traits conferring belowground resistance to herbivores in grasses. Front Plant Sci 7:1925. https://doi.org/10.3389/fpls.2016.01925
Moreno-García M, Córdoba-Aguilar A, Condé R, Lanz-Mendoza H (2013) Current immunity markers in insect ecological immunology: assumed trade-offs and methodological issues. Bull Entomol Res 103:127-139. https://doi.org/10.1017/S000748531200048X
Murray TJ, Tissue DT, Ellsworth DS, Riegler M (2013) Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus. Oecologia 171:1025-1035. https://doi.org/10.1007/s00442-012-2467-9
Nikpay A, Soleyman-Nejadian E, Goldasteh S, Farazmand H (2015) Response of sugarcane and sugarcane stalk borers Sesamia spp. (Lepidoptera: Noctuidae) to calcium silicate fertilization. Neotrop Entomol 44:498-503. https://doi.org/10.1007/s13744-015-0298-1
Núñez-Farfán J, Fornoni J, Valverde PL (2007) The evolution of resistance and tolerance to herbivores. Annual Review of Ecology, Evolution, and Systematics 38:541-566. https://doi.org/10.1146/annurev.ecolsys.38.091206.095822
Pekas A, Wäckers FL (2020) Bottom-up effects on tri-trophic interactions: Plant fertilization enhances the fitness of a primary parasitoid mediated by its herbivore host. J Econ Entomol 113:2619-2626. https://doi.org/10.1093/jee/toaa204
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Reidinger S, Ramsey MH, Hartley SE (2012) Rapid and accurate analyses of silicon and phosphorus in plants using a portable X‐ray fluorescence spectrometer. New Phytol 195:699-706. https://doi.org/10.1111/j.1469-8137.2012.04179.x
Remmel T, Davison J, Tammaru T (2011) Quantifying predation on folivorous insect larvae: the perspective of life-history evolution. Biol J Linn Soc 104:1-18. https://doi.org/10.1111/j.1095-8312.2011.01721.x
Reynolds OL, Padula MP, Zeng R, Gurr GM (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci 7:744. https://doi.org/10.3389/fpls.2016.00744
Ribeiro C, Brehélin M (2006) Insect haemocytes: What type of cell is that? J Insect Physiol 52:417-429. https://doi.org/10.1016/j.jinsphys.2006.01.005
Scholthof K-BG, Irigoyen S, Catalan P, Mandadi KK (2018) Brachypodium: A monocot grass model genus for plant biology. Plant Cell 30:1673-1694. https://doi.org/10.1105/tpc.18.00083
Singer MS, Stireman JOI (2005) The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecol Lett 8:1247-1255. https://doi.org/10.1111/j.1461-0248.2005.00835.x
Siva–Jothy MT (2000) A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proc R Soc B 267:2523-2527. https://doi.org/doi:10.1098/rspb.2000.1315
Stiling P, Cornelissen T (2005) What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol Control 34:236-246. https://doi.org/10.1016/j.biocontrol.2005.02.017
Teakle RE, Jensen JM (1985) Heliothis punctigera vol 2. Handbook of insect rearing. Elsevier, Amsterdam,
Vicari M, Bazely DR (1993) Do grasses fight back? The case for antiherbivore defences. Trends Ecol Evol 8:137-141. https://doi.org/10.1016/0169-5347(93)90026-l
Vidal MC, Murphy SM (2018) Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol Lett 21:138-150. https://doi.org/10.1111/ele.12874
Vogelweith F, Moret Y, Monceau K, Thiéry D, Moreau J (2016) The relative abundance of hemocyte types in a polyphagous moth larva depends on diet. J Insect Physiol 88:33-39. https://doi.org/10.1016/j.jinsphys.2016.02.010
Vogelweith F, Thiéry D, Moret Y, Colin E, Motreuil S, Moreau J (2014) Defense strategies used by two sympatric vineyard moth pests. J Insect Physiol 64:54-61. https://doi.org/10.1016/j.jinsphys.2014.03.009
Vogelweith F, Thiéry D, Quaglietti B, Moret Y, Moreau J (2011) Host plant variation plastically impacts different traits of the immune system of a phytophagous insect. Funct Ecol 25:1241-1247. https://doi.org/10.1111/j.1365-2435.2011.01911.x
Winde I, Wittstock U (2011) Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72:1566-1575. https://doi.org/10.1016/j.phytochem.2011.01.016
Wu X, Yu Y, Baerson SR, Song Y, Liang G, Ding C, Niu J, Pan Z, Zeng R (2017) Interactions between nitrogen and silicon in rice and their effects on resistance toward the brown planthopper Nilaparvata lugens. Front Plant Sci 8:28. https://doi.org/10.3389/fpls.2017.00028
Yang S, Ruuhola T, Rantala MJ (2007) Impact of starvation on immune defense and other lifehistory traits of an outbreaking geometrid, Epirrita autumnata: a possible causal trigger for the crash phase of population cycle. Ann Zool Fenn 44:89-96
Zhou J, Meng L, Li B (2017) Defensive behaviors of the Oriental armyworm Mythimna separata in response to different parasitoid species (Hymenoptera: Braconidae). PeerJ 5:e3690. https://doi.org/10.7717/peerj.3690