1 Schneider, H.-J. & Strongin, R. M. Supramolecular Interactions in Chemomechanical Polymers. Acc. Chem. Res. 42, 1489-1500, doi:10.1021/ar800274u (2009).
2 Schneider, H.-J. Logic-Gate Functions in Chemomechanical Materials. ChemPhysChem 18, 2306-2313, doi:10.1002/cphc.201700186 (2017).
3 Fasano, V. et al. Organic Nanofibers Embedding Stimuli-Responsive Threaded Molecular Components. J. Am. Chem. Soc. 136, 14245-14254, doi:10.1021/ja5080322 (2014).
4 Takashima, Y. et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 3, 1270, doi:10.1038/ncomms2280 (2012).
5 Iwaso, K., Takashima, Y. & Harada, A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat. Chem. 8, 625-632, doi:10.1038/nchem.2513 (2016).
6 Ikejiri, S., Takashima, Y., Osaki, M., Yamaguchi, H. & Harada, A. Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines. J. Am. Chem. Soc. 140, 17308-17315, doi:10.1021/jacs.8b11351 (2018).
7 Haino, T. Molecular-recognition-directed formation of supramolecular polymers. Polym J 45, 363-383, doi:10.1038/pj.2012.144 (2013).
8 Anderson, C. A. et al. High-Affinity DNA Base Analogs as Supramolecular, Nanoscale Promoters of Macroscopic Adhesion. J. Am. Chem. Soc. 135, 7288-7295, doi:10.1021/ja4005283 (2013).
9 Hu, J. & Liu, S. Engineering Responsive Polymer Building Blocks with Host–Guest Molecular Recognition for Functional Applications. Acc. Chem. Res. 47, 2084-2095, doi:10.1021/ar5001007 (2014).
10 Nakahata, M., Takashima, Y., Yamaguchi, H. & Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2, 511, doi:10.1038/ncomms1521 (2011).
11 Yan, X. et al. A self-healing supramolecular polymer gel with stimuli-responsiveness constructed by crown ether based molecular recognition. Polym. Chem. 4, 3312-3322, doi:10.1039/C3PY00283G (2013).
12 Chen, S. & Binder, W. H. Dynamic Ordering and Phase Segregation in Hydrogen-Bonded Polymers. Acc. Chem. Res. 49, 1409-1420, doi:10.1021/acs.accounts.6b00174 (2016).
13 Kakuta, T. et al. Preorganized Hydrogel: Self-Healing Properties of Supramolecular Hydrogels Formed by Polymerization of Host–Guest-Monomers that Contain Cyclodextrins and Hydrophobic Guest Groups. Adv. Mater. 25, 2849-2853, doi:10.1002/adma.201205321 (2013).
14 Nakahata, M., Takashima, Y. & Harada, A. Highly Flexible, Tough, and Self-Healing Supramolecular Polymeric Materials Using Host–Guest Interaction. Macromol. Rapid Commun. 37, 86-92, doi:10.1002/marc.201500473 (2016).
15 Nakahata, M., Mori, S., Takashima, Y., Yamaguchi, H. & Harada, A. Self-Healing Materials Formed by Cross-Linked Polyrotaxanes with Reversible Bonds. Chem 1, 766-775, doi:10.1016/j.chempr.2016.09.013 (2016).
16 McKee, J. R. et al. Healable, Stable and Stiff Hydrogels: Combining Conflicting Properties Using Dynamic and Selective Three-Component Recognition with Reinforcing Cellulose Nanorods. Adv. Funct. Mater. 24, 2706-2713, doi:10.1002/adfm.201303699 (2014).
17 Liu, J., Soo Yun Tan, C., Lan, Y. & Scherman, O. A. Toward a versatile toolbox for cucurbit[n]uril-based supramolecular hydrogel networks through in situ polymerization. J. Polym. Sci. Part A: Polym. Chem. 55, 3105-3109, doi:10.1002/pola.28667 (2017).
18 Liu, J., Tan, C. S. Y. & Scherman, O. A. Dynamic Interfacial Adhesion through Cucurbit[n]uril Molecular Recognition. Angew. Chem. Int. Ed. 57, 8854-8858, doi:10.1002/anie.201800775 (2018).
19 Wang, T., Yu, X., Li, Y., Ren, J. & Zhen, X. Robust, Self-Healing, and Multistimuli-Responsive Supergelator for the Visual Recognition and Separation of Short-Chain Cycloalkanes and Alkanes. ACS Appl. Mater. Interfaces 9, 13666-13675, doi:10.1021/acsami.6b15249 (2017).
20 Wang, Z. et al. A Rapidly Self-Healing Host–Guest Supramolecular Hydrogel with High Mechanical Strength and Excellent Biocompatibility. Angew. Chem. Int. Ed. 57, 9008-9012, doi:10.1002/anie.201804400 (2018).
21 Jia, Y.-G. et al. Self-Healing Hydrogels of Low Molecular Weight Poly(vinyl alcohol) Assembled by Host–Guest Recognition. Biomacromolecules 19, 626-632, doi:10.1021/acs.biomac.7b01707 (2018).
22 Yu, C., Alkekhia, D. & Shukla, A. β-Lactamase Responsive Supramolecular Hydrogels with Host–Guest Self-Healing Capability. ACS Appl. Polym. Mater. 2, 55-65, doi:10.1021/acsapm.9b00879 (2020).
23 Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A. & Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nat. Chem. 3, 34-37, doi:10.1038/nchem.893 (2011).
24 Yamaguchi, H., Kobayashi, R., Takashima, Y., Hashidzume, A. & Harada, A. Self-Assembly of Gels through Molecular Recognition of Cyclodextrins: Shape Selectivity for Linear and Cyclic Guest Molecules. Macromolecules 44, 2395-2399, doi:10.1021/ma200398y (2011).
25 Cheng, M. et al. Macroscopic Supramolecular Assembly of Rigid Building Blocks Through a Flexible Spacing Coating. Adv. Mater. 26, 3009-3013, doi:10.1002/adma.201305177 (2014).
26 Xiao, M., Xian, Y. & Shi, F. Precise Macroscopic Supramolecular Assembly by Combining Spontaneous Locomotion Driven by the Marangoni Effect and Molecular Recognition. Angew. Chem. Int. Ed. 54, 8952-8956, doi:10.1002/anie.201502349 (2015).
27 Akram, R., Arshad, A., Wu, Y., Wu, Z. & Wu, D. Efficient modification with flexible spacing coating for in situ reversible assembly of semirigid macroscopic objects through hierarchical metal coordination. Polym. Adv. Technol. 29, 226-233, doi:10.1002/pat.4107 (2018).
28 Zheng, Y., Hashidzume, A., Takashima, Y., Yamaguchi, H. & Harada, A. Macroscopic Observation of Molecular Recognition: Discrimination of the Substituted Position on Naphthyl Group by Polyacrylamide Gel Modified with β-Cyclodextrin. Langmuir 27, 13790-13795, doi:10.1021/la2034142 (2011).
29 Hashidzume, A., Zheng, Y., Takashima, Y., Yamaguchi, H. & Harada, A. Macroscopic Self-Assembly Based on Molecular Recognition: Effect of Linkage between Aromatics and the Polyacrylamide Gel Scaffold, Amide versus Ester. Macromolecules 46, 1939-1947, doi:10.1021/ma302344x (2013).
30 Zheng, Y. et al. Visible chiral discrimination via macroscopic selective assembly. Commun. Chem. 1, 4, doi:10.1038/s42004-017-0003-x (2018).
31 Watanabe, Y., Fuji, T., Hioki, K., Tani, S. & Kunishima, M. Development of a Simple System for Dehydrocondensation Using Solid-Phase Adsorption of a Water-Soluble Dehydrocondensing Reagent (DMT-MM). Chem. Pharm. Bull. 52, 1223-1226, doi:10.1248/cpb.52.1223 (2004).
32 Hashidzume, A., Itami, T., Kamon, Y. & Harada, A. A Simplified Model for Multivalent Interaction Competing with a Low Molecular Weight Competitor. Chem. Lett., in press.
33 Rasband, W.S. ImageJ (U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997-2014).
34 von Smoluchowski, M. Mathematical theory of the kinetics of the coagulation of colloidal solutions. Z. Phys. Chem. 92, 129-168 (1917).
35 Hidalgo-Álvarez, R. et al. Electrokinetic properties, colloidal stability and aggregation kinetics of polymer colloids. Adv. Colloid Interface Sci. 67, 1-118, doi:10.1016/0001-8686(96)00297-7 (1996).
36 Dickinson, E. Structure and Rheology of Simulated Gels Formed from Aggregated Colloidal Particles. J. Colloid Interface Sci. 225, 2-15, doi:10.1006/jcis.1999.6662 (2000).
37 Zhou, J., Ralston, J., Sedev, R. & Beattie, D. A. Functionalized gold nanoparticles: Synthesis, structure and colloid stability. J. Colloid Interface Sci. 331, 251-262, doi:10.1016/j.jcis.2008.12.002 (2009).
38 Lu, Z. & Yin, Y. Colloidal nanoparticle clusters: functional materials by design. Chem. Soc. Rev. 41, 6874-6887, doi:10.1039/C2CS35197H (2012).
39 Szilagyi, I., Trefalt, G., Tiraferri, A., Maroni, P. & Borkovec, M. Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter 10, 2479-2502, doi:10.1039/C3SM52132J (2014).
40 Sander, L. M. Fractal growth processes. Nature 322, 789-793 (1986).
41 Meakin, P. Fractal aggregates. Adv. Colloid Interface Sci. 28, 249-331, doi:10.1016/0001-8686(87)80016-7 (1987).
42 Meakin, P. Models for Colloidal Aggregation. Annu. Rev. Phys. Chem. 39, 237-267, doi:10.1146/annurev.pc.39.100188.001321 (1988).
43 Kopelman, R. Fractal Reaction Kinetics. Science 241, 1620-1626, doi:10.1126/science.241.4873.1620 (1988).
44 Weitz, D. & Oliveria, M. Fractal Structures Formed by Kinetic Aggregation of Aqueous Gold Colloids. Phys. Rev. Lett. 52, 1433-1436, doi:10.1103/PhysRevLett.52.1433 (1984).
45 Weitz, D. A., Huang, J. S., Lin, M. Y. & Sung, J. Limits of the Fractal Dimension for Irreversible Kinetic Aggregation of Gold Colloids. Phys. Rev. Lett. 54, 1416-1419, doi:10.1103/PhysRevLett.54.1416 (1985).
46 Onofri, F. R. A., Wozniak, M. & Barbosa, S. On the Optical Characterisation of Nanoparticle and their Aggregates in Plasma Systems. Contrib. Plasma Phys. 51, 228-236, doi:10.1002/ctpp.201000056 (2011).
47 Wozniak, M., Onofri, F. R. A., Barbosa, S., Yon, J. & Mroczka, J. Comparison of methods to derive morphological parameters of multi-fractal samples of particle aggregates from TEM images. J. Aerosol Sci. 47, 12-26, doi:10.1016/j.jaerosci.2011.12.008 (2012).
48 Varga, I., Kun, F. & Pál, K. Structure formation in binary colloids. Phys. Rev. E 69, 030501, doi:10.1103/PhysRevE.69.030501 (2004).
49 Lopez-Lopez, J. M., Schmitt, A., Moncho-Jorda, A. & Hidalgo-Alvarez, R. Stability of binary colloids: kinetic and structural aspects of heteroaggregation processes. Soft Matter 2, 1025-1042, doi:10.1039/B608349H (2006).
50 Dickinson, E. Stabilising emulsion-based colloidal structures with mixed food ingredients. J. Sci. Food Agric. 93, 710-721, doi:10.1002/jsfa.6013 (2013).
51 Hiddessen, A. L., Rodgers, S. D., Weitz, D. A. & Hammer, D. A. Assembly of Binary Colloidal Structures via Specific Biological Adhesion. Langmuir 16, 9744-9753, doi:10.1021/la000715f (2000).
52 Ristenpart, W., Aksay, I. & Saville, D. Electrically Guided Assembly of Planar Superlattices in Binary Colloidal Suspensions. Phys. Rev. Lett. 90, 128303, doi:10.1103/PhysRevLett.90.128303 (2003).
53 Pierce, F., Chakrabarti, A., Fry, D. & Sorensen, C. M. Computer Simulation of Selective Aggregation in Binary Colloids. Langmuir 20, 2498-2502, doi:10.1021/la0356452 (2004).
54 Stirner, T. & Sun, J. Molecular Dynamics Simulation of the Structural Configuration of Binary Colloidal Monolayers. Langmuir 21, 6636-6641, doi:10.1021/la050402q (2005).
55 Rabideau, B. D. & Bonnecaze, R. T. Computational Predictions of Stable 2D Arrays of Bidisperse Particles. Langmuir 21, 10856-10861, doi:10.1021/la050462w (2005).
56 Law, A. D., Auriol, M., Smith, D., Horozov, T. S. & Buzza, D. M. A. Self-Assembly of Two-Dimensional Colloidal Clusters by Tuning the Hydrophobicity, Composition, and Packing Geometry. Phys. Rev. Lett. 110, 138301, doi:10.1103/PhysRevLett.110.138301 (2013).
57 Hamasaki, K. et al. Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. J. Am. Chem. Soc. 115, 5035-5040, doi:10.1021/ja00065a012 (1993).