The nonlinear fluctuation and uncertainty that characterize urban traffic flow are well-known. An Improved Cuckoo Search-Wavelet Neural Network (ICS-WNN) prediction model for urban traffic flow is suggested in order to increase the accuracy of traffic flow predictions. After the original traffic flow data have been cleaned up and normalized, the traffic flow prediction network model is built by optimizing the wavelet neural network weights and wavelet shrinkage and translation factors based on the adaptive step size and discovery probability of the cuckoo algorithm, and then adding the neural network momentum factor. The traffic flow prediction network model is built in two stages. The results of the experimental simulations demonstrate that the ICS-WNN prediction algorithm has a better fit and accuracy than numerous common optimization prediction techniques, which is encouraging.