In view of the phenomenon that there is no uniform theoretical formula for the connection area between the elliptical head and the cylinder, the author takes the standard elliptical head as the research object. Firstly, the theoretical stress calculation formula of the elliptical head and the discontinuous area of the cylinder is derived according to the deformation continuity equation. Secondly, the experimental stress is measured by means of the internal pressure thin-walled vessel stress measuring apparatus, The theoretical stress and experimental stress in discontinuous region are analyzed and compared to verify the accuracy and applicability of the formula for calculating the theoretical stress of the elliptical head and the cylinder discontinuity region. The results show that the theoretical stress calculation formula of discontinuous region of elliptical head is obtained according to the equation of deformation continuity, edge force and edge moment, internal force and internal moment; The internal pressure load is kept unchanged, and for the theoretical longitudinal stress, the constant stress is greater than 0, which is the tensile stress, and decreases gradually from the vertex to the equator; For the theoretical circumferential stress, the change trend is more complex, which can be divided into three stages, and there is pressure stress. At the vertex, the magnitude of the meridional stress and the circumferential stress is approximately equal; The change of the change from point 8 to point 10 is affected by discontinuous stress, and the change trend is abrupt; The theoretical stress and experimental stress in discontinuous region of elliptical head are analyzed and compared, and the accuracy and applicability of the formula are verified. The results are of great significance for the stress measurement of internal pressure vessels.