[1] CULP M B, SOERJOMATARAM I, EFSTATHIOU J A, et al. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates [J]. Eur Urol, 2020, 77(1): 38-52.
[2] SCHATTEN H. Brief Overview of Prostate Cancer Statistics, Grading, Diagnosis and Treatment Strategies [J]. Adv Exp Med Biol, 2018, 1095(1-14).
[3] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2018 [J]. CA Cancer J Clin, 2018, 68(1): 7-30.
[4] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[5] GEORGE A K, TURKBEY B, VALAYIL S G, et al. A urologist's perspective on prostate cancer imaging: past, present, and future [J]. Abdom Radiol (NY), 2016, 41(5): 805-816.
[6] SUN Y, REYNOLDS H M, PARAMESWARAN B, et al. Multiparametric MRI and radiomics in prostate cancer: a review [J]. Australas Phys Eng Sci Med, 2019, 42(1): 3-25.
[7] MANFREDI M, MELE F, GARROU D, et al. Multiparametric prostate MRI: technical conduct, standardized report and clinical use [J]. Minerva Urol Nefrol, 2018, 70(1): 9-21.
[8] CHOI E R, LEE H Y, JEONG J Y, et al. Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma [J]. Oncotarget, 2016, 7(41): 67302-67313.
[9] LI M, CHEN T, ZHAO W, et al. Radiomics prediction model for the improved diagnosis of clinically significant prostate cancer on biparametric MRI [J]. Quant Imaging Med Surg, 2020, 10(2): 368-379.
[10] HAMM C A, BEETZ N L, SAVIC L J, et al. [Artificial intelligence and radiomics in MRI-based prostate diagnostics] [J]. Radiologe, 2020, 60(1): 48-55.
[11] HARMON S A, TUNCER S, SANFORD T, et al. Artificial intelligence at the intersection of pathology and radiology in prostate cancer [J]. Diagn Interv Radiol, 2019, 25(3): 183-188.
[12] PANTANOWITZ L, QUIROGA-GARZA G M, BIEN L, et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study [J]. Lancet Digit Health, 2020, 2(8): e407-e416.
[13] STARK G F, HART G R, NARTOWT B J, et al. Predicting breast cancer risk using personal health data and machine learning models [J]. PLoS One, 2019, 14(12): e0226765.
[14] TREBESCHI S, DRAGO S G, BIRKBAK N J, et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers [J]. Ann Oncol, 2019, 30(6): 998-1004.
[15] HORVAT N, BATES D D B, PETKOVSKA I. Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review [J]. Abdom Radiol (NY), 2019, 44(11): 3764-3774.
[16] NAKAMOTO T, HAGA A, TAKAHASHI W. [An Introduction to Radiomics: Toward a New Era of Precision Medicine] [J]. Igaku Butsuri, 2018, 38(3): 129-134.
[17] MORIN A, FRITSCH L, MATHIEU J R, et al. Identification of CAD as an androgen receptor interactant and an early marker of prostate tumor recurrence [J]. Faseb j, 2012, 26(1): 460-467.
[18] SCHMUECKING M, BOLTZE C, GEYER H, et al. Dynamic MRI and CAD vs. choline MRS: where is the detection level for a lesion characterisation in prostate cancer? [J]. Int J Radiat Biol, 2009, 85(9): 814-824.
[19] WEINREB J C, BARENTSZ J O, CHOYKE P L, et al. PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2 [J]. Eur Urol, 2016, 69(1): 16-40.
[20] WANG J C, HUAN S K, KUO J R, et al. A multivariable logistic regression equation to evaluate prostate cancer [J]. J Formos Med Assoc, 2011, 110(11): 695-700.
[21] LI Y, TANG Z, QI L, et al. [Analysis of influential factors for prostate biopsy and establishment of logistic regression model for
prostate cancer] [J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2015, 40(6): 651-656.
[22] WIBMER A, HRICAK H, GONDO T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason score [J]. Eur Radiol, 2015, 25(10): 2840-2850.
[23] XIONG H, HE X, GUO D. Value of MRI texture analysis for predicting high-grade prostate cancer [J]. Clin Imaging, 2021, 72(168-174).
[24] PAN R, YANG X, SHU Z, et al. Application of texture analysis based on T2-weighted magnetic resonance images in discriminating Gleason score of prostate cancer [J]. J Xray Sci Technol, 2020, 28(6): 1207-1218.
[25] DANIEL M, KUESS P, ANDRZEJEWSKI P, et al. Impact of androgen deprivation therapy on apparent diffusion coefficient and T2w MRI for histogram and texture analysis with respect to focal radiotherapy of prostate cancer [J]. Strahlenther Onkol, 2019, 195(5): 402-411.
[26] YIP S S F, LIU Y, PARMAR C, et al. Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer [J]. Sci Rep, 2017, 7(1): 3519.
[27] KIERANS A S, BENNETT G L, MUSSI T C, et al. Characterization of malignancy of adnexal lesions using ADC entropy: comparison with mean ADC and qualitative DWI assessment [J]. J Magn Reson Imaging, 2013, 37(1): 164-171.
[28] CUOCOLO R, CIPULLO M B, STANZIONE A, et al. Machine learning applications in prostate cancer magnetic resonance imaging [J]. Eur Radiol Exp, 2019, 3(1): 35.
[29] CHEN X W, GAO J X. Big Data Bioinformatics [J]. Methods, 2016, 111(1-2).
[30] STANZIONE A, CUOCOLO R, COCOZZA S, et al. Detection of Extraprostatic Extension of Cancer on Biparametric MRI Combining Texture Analysis and Machine Learning: Preliminary Results [J]. Acad Radiol, 2019, 26(10): 1338-1344.
[31] ALVAREZ-JIMENEZ C, BARRERA C, MUNERA N, et al. Differentiating Cancerous and Non-cancerous Prostate Tissue Using Multi-scale Texture Analysis on MRI [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019(2695-2698).
[32] WU M, KRISHNA S, THORNHILL R E, et al. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis [J]. J Magn Reson Imaging, 2019, 50(3): 940-950.
[33] ROSENKRANTZ A B, AYOOLA A, HOFFMAN D, et al. The Learning Curve in Prostate MRI Interpretation: Self-Directed Learning Versus Continual Reader Feedback [J]. AJR Am J Roentgenol, 2017, 208(3): W92-w100.
[34] BOROFSKY S, GEORGE A K, GAUR S, et al. What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate [J]. Radiology, 2018, 286(1): 186-195.
[35] WEI L, CHAMPMAN S, LI X, et al. Beliefs about medicines and non-adherence in patients with stroke, diabetes mellitus and rheumatoid arthritis: a cross-sectional study in China [J]. BMJ Open, 2017, 7(10): e017293.