1. World Health Organization. World Malaria Report 2019. Geneva; 2019. https://www.who.int/publications-detail/world-malaria-report-2019. accessed 9 Dec 2020.
2. Luc DS, Benoit A, Laurette D, Michel M. Indirect evidence that agricultural pesticides select for insecticide resistance in the malaria vector Anopheles gambiae. J. Vector Ecol. 2016;41:34–40. doi:10.1111/jvec.12191.
3. Wiebe A, Longbottom J, Gleave K, Shearer FM, Sinka ME, Massey NC, et al. Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance. Malar. J. BioMed Central; 2017;16:85–95. doi:10.1186/s12936-017-1734-y.
4. Millar SB, Cox-Singh J. Human infections with Plasmodium knowlesi-zoonotic malaria. Clin. Microbiol. Infect. Elsevier Ltd; 2015;21:640–8. doi.org/10.1016/j.cmi.2015.03.017
5. Harbach RE. The classification of genus Anopheles (Diptera: Culicidae): a working hypothesis of phylogenetic relationships . Bull. Entomol. Res. 2004;94:537–53. doi:10.1079/ber2004321.
6. Hunt RH, Coetzee M, Fettene M. The Anopheles gambiae complex: a new species from Ethiopia. Trans. R. Soc. Trop. Med. Hyg. 1998;92:231–5. doi:10.1016/s0035-9203(98)90761-1.
7. World Health Organization. The Africa Malaria Report 2003. 2003;
8. Coetzee M. Distribution of the African malaria vectors of the Anopheles gambiae complex. Am. J. Trop. Med. Hyg. 2004;70:103–4. doi:70/2/103 [pii].
9. Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J. A global index representing the stability of malaria transmission. Am. J. Trop. Med. Hyg. 2004;70:486–98. doi:10.4269/ajtmh.2004.70.486.
10. Ribeiro H, Ramos H, Capela R, Pires C. Os mosquitos de Cabo Verde (Diptera: Culicidae) – sistemática, distribuição, bioecologia e importância médica. Lisboa: Junta de Investigações Científicas do Ultramar; 1980.
11. Alves J, Roque AL, Cravo P, Valdez T, Jelinek T, Rosário VE do, et al. Epidemiological characterization of Plasmodium falciparum in the Republic of Cabo Verde: implications for potential large-scale re-emergence of malaria. Malar. J. 2006;5:32–40. doi:10.1186/1475-2875-5-32.
12. Cambournac F, Petrarca V, Coluzzi M. Anopheles arabiensis in Cape Verde archipelago. Parassitologia; 1982;14:265–7.
13. da Cruz DL, Paiva MHS, Guedes DRD, Alves J, Gómez LF, Ayres CFJ. Detection of alleles associated with resistance to chemical insecticide in the malaria vector Anopheles arabiensis in Santiago, Cabo Verde. Malar. J. 2019;18:120–31. doi:10.1186/s12936-019-2757-3.
14. World Health Organization. Eliminating Malaria: Moving towards sustainable elimination in Cape Verde. 2012;45.
15. Irving H, Wondji CS. Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa. BMC Genet. BMC Genetics; 2017;18:76–87. doi:10.1186/s12863-017-0539-x.
16. World Health Organization. Global plan for insecticide resistance management in malaria vectors. Geneva; 2012. ISBN 9789241564472.
17. Snow RW, Amratia P, Kabaria CW, Noor AM, Marsh K. The Changing Limits and Incidence of Malaria in Africa. 1939-2009. In Advances in Parasitology; 1st ed. London: 2012. p. 169–262. ISBN 9780123943033.
18. World Health Organization. World Malaria Report 2014. Geneva. 2014. Vol. 383; ISBN 9789241564106.
19. Djègbè I, Agossa FR, Jones CM, Poupardin R, Cornelie S, Akogbéto M, et al. Molecular characterization of DDT resistance in Anopheles gambiae from Benin. Parasit. Vectors. 2014;7:409–18. doi:10.1186/1756-3305-7-409.
20. Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, et al. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar. J. 2013;12:149. doi:10.1186/1475-2875-12-149.
21. Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control? Trends Parasitol. Elsevier Ltd; 2011;27:91–8. doi:10.1016/j.pt.2010.08.004.
22. World Health Organization. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Second. Geneva: Springer Berlin Heidelberg; 2016. Vol. 2; ISBN 978-3-642-10564-7.
23. Chouaïbou M, Kouadio FB, Tia E, Djogbenou L. First report of the East African kdr mutation in an Anopheles gambiae mosquito in Côte d’Ivoire. Wellcome Open Res. 2017;2:8. doi:10.12688/wellcomeopenres.10662.1.
24. Abdalla H, Wilding CS, Nardini L, Pignatelli P, Koekemoer LL, Ranson H, et al. Insecticide resistance in Anopheles arabiensis in Sudan: temporal trends and underlying mechanisms. Parasit. Vectors. 2014;7:213–22. doi:10.1186/1756-3305-7-213.
25. Hakizimana E, Karema C, Munyakanage D, Iranzi G, Githure J, Tongren JE, et al. Susceptibility of Anopheles gambiae to insecticides used for malaria vector control in Rwanda. Malar. J. 2016;15:582–93. doi:10.1186/s12936-016-1618-6.
26. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol. Biol. 1998;7:179–84. doi:10.1046/j.1365-2583.1998.72062.x.
27. Dabiré RK, Namountougou M, Diabaté A, Soma DD, Bado J, Toé HK, et al. Distribution and frequency of kdr mutations within Anopheles gambiae s.l. populations and first report of the Ace.1G119S mutation in Anopheles arabiensis from Burkina Faso (West Africa). PLoS One. 2014;9:e101484. doi:10.1371/journal.pone.0101484.
28. Lynd A, Oruni A, Van’T Hof AE, Morgan JC, Naego LB, Pipini D, et al. Insecticide resistance in Anopheles gambiae from the northern Democratic Republic of Congo, with extreme knockdown resistance (kdr) mutation frequencies revealed by a new diagnostic assay. Malar. J. 2018;17:412–20. doi:10.1186/s12936-018-2561-5.
29. Mathias DK, Ochomo E, Atieli F, Ombok M, Bayoh MN, Olang G, et al. Spatial and temporal variation in the kdr allele L1014S in Anopheles gambiae s.s. and phenotypic variability in susceptibility to insecticides in Western Kenya. Malar. J. 2011;10:13. doi:10.1186/1475-2875-10-10.
30. Kanzaa JPB, El Fahime E, Alaoui S, Essassi EM, Brooke B, Malafu AN, et al. Pyrethroid, DDT and malathion resistance in the malaria vector Anopheles gambiae from the democratic Republic of Congo. Trans. R. Soc. Trop. Med. Hyg. 2013;107:8–14. doi:10.1093/trstmh/trs002.
31. Djègbè I, Akoton R, Tchigossou G, Ahadji-Dabla KM, Atoyebi SM, Adéoti R, et al. First report of the presence of L1014S Knockdown-resistance mutation in Anopheles gambiae s.s and Anopheles coluzzii from Togo, West Africa. Wellcome Open Res. 2018;3:30–44. doi:10.12688/wellcomeopenres.13888.1.
32. Yewhalaw D, Van Bortel W, Denis L, Coosemans M, Duchateau L, Speybroeck N. First evidence of high knockdown resistance frequency in Anopheles arabiensis (Diptera: Culicidae) from Ethiopia. Am. J. Trop. Med. Hyg. 2010;83:122–5. doi:10.4269/ajtmh.2010.09-0738.
33. Lucas ER, Rockett KA, Lynd A, Essandoh J, Grisales N, Kemei B, et al. A high throughput multi-locus insecticide resistance marker panel for tracking resistance emergence and spread in Anopheles gambiae. Sci. Rep. 2019;9:13335. doi:10.1038/s41598-019-49892-6.
34. Mitri C, Markianos K, Guelbeogo WM, Bischoff E, Gneme A, Eiglmeier K, et al. The kdr-bearing haplotype and susceptibility to Plasmodium falciparum in Anopheles gambiae: Genetic correlation and functional testing. Malar. J. 2015;14:391–402. doi:10.1186/s12936-015-0924-8.
35. Hemming-Schroeder E, Strahl S, Yang E, Nguyen A, Lo E, Zhong D, et al. Emerging pyrethroid resistance among Anopheles arabiensis in Kenya. Am. J. Trop. Med. Hyg. 2018;98:704–9. doi:10.4269/ajtmh.17-0445.
36. Barros E. Plano de Ocupação de Terreno em Cabo Verde para Empreendimento Turístico. Rio de Janeiro; 2011.
37. Instituto Nacional de Estatística de Cabo Verde. Projecções Demográficas de Cabo Verde 2010-2030. Inst. Nac. Estatística Cabo Verde. 2013;163.
38. Instituto Nacional de Estatística de Cabo Verde. APRESENTAÇÃO DE DADOS PRELIMINARES DO IVo RGPH 2010 Gabinete do Censo 2010. 2010.
39. Monteiro S, Veiga É, Fernandes É, Fernandes H, Rodrigues J, Cunha L. Crescimento urbano espontâneo e riscos naturais na cidade da Praia (Cabo Verde). In Cadernos de Geografia: Faculdade de Letras da Universidade de Coimbra, Departamento de Geografia; 2011. p. 117–30.
40. Nwane P, Etang J, Chouaїbou M, Toto JC, Koffi A, Mimpfoundi R, et al. Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon, Central Africa. Parasit. Vectors. 2013;6:41. doi:10.1186/1756-3305-6-41.
41. Ayres C, Romão T, Melo-Santos M, Furtado A. Genetic diversity in Brazilian populations of Aedes albopictus. Mem. Inst. Oswaldo Cruz. 2002;97:871–5. doi:10.1590/S0074-02762002000600022.
42. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 1993;49:520–9.
43. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–8. doi:citeulike-article-id:691774.
44. World Health Organization. Global report on insecticide resistance in malaria vectors: 2010–2016. Geneva; 2018. ISBN 9789241514057.
45. Kwiatkowska RM, Platt N, Poupardin R, Irving H, Dabire RK, Mitchell S, et al. Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallée du Kou, Burkina Faso. Gene. Elsevier B.V.; 2013;519:98–106. doi:10.1016/j.gene.2013.01.036.
46. Kawada H, Futami K, Komagata O, Kasai S, Tomita T, Sonye G, et al. Distribution of a Knockdown Resistance Mutation (L1014S) in Anopheles gambiae s.s. and Anopheles arabiensis in Western and Southern Kenya. Langsley G, editor. PLoS One. 2011;6:e24323. doi:10.1371/journal.pone.0024323.
47. Verhaeghen K, Van Bortel W, Roelants P, Backeljau T, Coosemans M. Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis. Malar. J. 2006;5:16. doi:10.1186/1475-2875-5-16.
48. Badolo A, Traore A, Jones CM, Sanou A, Flood L, Guelbeogo WM, et al. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: Resistance on the rise? Malar. J. Malaria Journal; 2012;11:232–43. doi:10.1186/1475-2875-11-232.
49. Kabula B, Kisinza W, Tungu P, Ndege C, Batengana B, Kollo D, et al. Co-occurrence and distribution of East (L1014S) and West (L1014F) African knock-down resistance in Anopheles gambiae sensu lato population of Tanzania. Trop. Med. Int. Heal. 2014;19:331–41. doi:10.1111/tmi.12248.
50. Ochomo E, Subramaniam K, Kemei B, Rippon E, Bayoh NM, Kamau L, et al. Presence of the knockdown resistance mutation, Vgsc-1014F in Anopheles gambiae and An. arabiensis in western Kenya. Parasit. Vectors. Parasites & Vectors; 2015;8:616. doi:10.1186/s13071-015-1223-5.
51. Thiaw O, Doucouré S, Sougoufara S, Bouganali C, Konaté L, Diagne N, et al. Investigating insecticide resistance and knock-down resistance (kdr) mutation in Dielmo, Senegal, an area under long lasting insecticidal-treated nets universal coverage for 10 years. Malar. J. 2018;17:123–32. doi:10.1186/s12936-018-2276-7.
52. Ndiath MO, Cailleau A, Orlandi-Pradines E, Bessell P, Pagès F, Trape JF, et al. Emerging knock-down resistance in Anopheles arabiensis populations of Dakar, Senegal: First evidence of a high prevalence of kdr-e mutation in West African urban area. Malar. J. 2015;14:364–73. doi:10.1186/s12936-015-0898-6.
53. Pires S, Alves J, Dia I, Gómez LF. Susceptibility of mosquito vectors of the city of Praia, Cabo Verde, to Temephos and Bacillus thuringiensis var israelensis. PLoS One. 2020;15:e0234242. doi:10.1371/journal.pone.0234242.
54. DePina AJ, Namountougou M, Leal SV, Varela IBF, Monteiro DDS, de Sousa CMR, et al. Anopheles gambiae sensu lato Susceptibility to the Insecticides in Praia, Cape Verde: A Country in the Pre-Elimination of Malaria. Vector Biol. J. Res. 2018;3:5. doi:10.4172/2473-4810.1000130.