1 . Rosenthal S, Cullom J, Hawkins W, Moore SC, Tsui BMW, Yester M. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med. 1995;36:1489-513.
2 . Celler A, Dixon KL, Chang Z, Blinder S, Powe J, Harrop R. Problems created in attenuation-corrected SPECT images by artifacts in attenuation maps: a simulation study. J Nucl Med. 2005;46:335-43.
3 . https://ACR.org/Clinical-Resources/Accreditation. Accessed February 2, 2021
4 . Leong LK, Kruger RL, O’connor MK. A comparison of the uniformity requirements for SPECT image reconstruction using FBP and OSEM techniques. J Nucl Med Technology. 2001;9;79-83.
5 . Gullberg GT. An analytic approach to quantify uniformity artifacts for circular and noncircular detector motion in single photon emission computed tomography imaging. Med Phys. 1987;14:105-14.
6 . O’Connor MK, Vermeersch C. Critical examination of the uniformity requirements for single-photon emission computed tomography. Med Phys. 1991;18:190-7.
7 . Nichols KJ, DiFilippo FP, Palestro CJ. Texture analysis for automated evaluation of Jaszczak phantom SPECT system tests. Med Phys. 2019;46(1):262-72.
8 . DiFilippo FP. Assessment of PET and SPECT phantom image quality through automated binary classification of cold rod arrays. Med Phys. 2019; 46:3451-61.
9 . Sarnelli A, Mezzenga E, Vagheggini A, Piccinini F, Feliciani G, Belli ML, et al. Texture analysis in 177Lu SPECT phantom images: Statistical assessment of uniformity requirements using texture features. PLoS ONE. 2019;14(7):e0218814.
10 . Madsen MT. A method for quantifying SPECT uniformity. Med Phys. 1997;24:1696-700.
11 . Hirtl A, Bergmann H, Knausl B, Beyer T, Figl M, Hummel J. Technical Note: Fully-automated analysis of Jaszczak phantom measurements as part of routine SPECT quality control. Med Phys. 2017;44:1638-45.
12 . Jaszczak RJ. United States Patent No. 4,499,375; 1985.
13 . http://www.spect.com/pub/Flangeless_Jasczack_Phantoms.pdf. Accessed July 27, 2018.
14 . Fang YH, Lin CY, Shih MJ, Wang HM, Ho TY, Liao CT, et al. Development and evaluation of an open-source software package "CGITA" for quantifying tumor heterogeneity with molecular images. Biomed Res Int. 2014;2014:248505. doi:10.1155/2014/248505
15 . Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3:610–21.
16 . Cunliffe AR, Al-Hallaq HA, Labby ZE, Pelizzari CA, Straus C, Sensakovic WF, et al. Lung texture in serial thoracic CT scans: Assessment of change introduced by image registration. Med Phys. 2012;39:4679-90.
17 . Dong X, Xing L, Wu P, Fu Z, Wan H, Li D, et al. Three-dimensional positron emission tomography image texture analysis of esophageal squamous cell carcinoma: relationship between tumor 18F-fluorodeoxyglucose uptake heterogeneity, maximum standardized uptake value, and tumor stage. Nuc Med Commun. 2012;34:40-6.
18 . Horng M-H, Sun Y-N, Lin X-Z. Texture feature coding method for classification of liver sonography. Comput Med Imaging Graph. 2002;26:33-42.
19 . Gaber A, Hamdy A, Abdelaal HM, Elkattan A, Elshourbagy MM, Youness HA. Automatic classification algorithm for diffused liver diseases based on ultrasound images. IEEE Access. 2021; doi. 10.1109/ACCESS.2021.3049341; accessed on February 2, 2021.
20 . Chu A, Sehgal CM, Greenleaf JF. Use of gray value distribution of run length for texture analysis. Pattern Recogn Lett. 1990;11:415-9.
21 . Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, et al. Texture indexes and gray level size zone matrix. Application to cell nuclei classification. 10th International Conference on Pattern Recognition and Information Processing, PRIP 2009, 2009, Minsk, Belarus. pp.140-5. ⟨hal-01499715⟩
22 . Michelson, AA. Studies in Optics. (University Press, 1927).
23 . Rasband WS. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018.
24 . Medcalc Statistical Software version 19.3.1 (MedCalc Software Ltd, Ostend, Belgium; https://www.medcalc.org; 2020).
25 . Tibshirani R. Regression shrinkage and selection via the Lasso. J R Statist Soc B. 1996;58:267–88.
26 . Friedman JM, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descendent. J Stat Softw. 2010:33;1-22.
27 . Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-74.
28 . DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837-45.
29 . Busemann Sokole E, Plachcinska A, Britten A. Acceptance testing for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37:672-81.
30 . DePuey EG. How to Detect and Avoid Myocardial Perfusion SPECT Artifacts. J Nucl Med. 1994;35:699-702.
31 . Rose A. The sensitivity performance of the human eye on an absolute scale. J Opt Soc Am. 1948;38:196–208.
32 . Burgess AE. The Rose model, revisited. J Opt Soc Am A. 1999;16:633-46.
33 . Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2(1):1-8.
34 . Shafiq‐Ul‐Hassan M, Zhang GG , Latifi K, Ullah G, Hunt DC, Balagurunathan Y, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017;44(3):1050-62.
35 . Shafiq-ul-Hassan M, Latifi K, Zhang G, Ullah G, Gillies R, Moros E. Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci Rep. 2018;8(1):1-9.