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Abstract

The significant multi-decadal mode (MDM) of the Indian summer monsoon rainfall (ISMR) during the
past two millennia provides a basis for decadal predictability of the ISMR and has a strong association
with the North-Atlantic variability with the Atlantic Multi-decadal Oscillation (AMO) as a potential external
driver. It is also known that the annual cycles and interannual variability of ISMR and sea surface
temperatures (SST) over the tropical Indian Ocean (I0) are strongly coupled. However, the role of local air-
sea interactions in maintaining or modifying the ISMR MDM remains unknown. A related puzzle we
identify is that the 10 SST has an increasing trend during two opposite phases of the ISMR MDM, namely
during an increasing phase of ISMR (1901 to 1957) as well as a decreasing phase of ISMR (1958-2007).
Here, using a twentieth-century reanalysis (20CR), we examine the role of air-sea interactions in
maintaining two opposite phases of the ISMR MDM and unravel that the Bjerknes feedback is at the
heart of maintaining the ISMR MDM but cannot explain the increasing trend of SST in the tropical 10
during the opposite phases. Large-scale low-level vorticity influence on SST and net heat flux changes
through circulation and cloudiness changes associated with the two phases of the ISMR MDM together
contribute to the SST trends. The decreasing trend of low-level wind convergence during the period
between 1958 and 2007 is a determining factor for the decreasing trend of ISMR in the backdrop of an
increasing trend of atmospheric moisture content. Consistent with the lead of the AMO with respect to
ISMR by about a decade, the AMO drives the transition from one phase of ISMR MDM to another by
changing its phase first and setting up low-level equatorial zonal winds conducive for the transition.

Introduction

The share of agriculture in the gross domestic product (GDP) of India hovered between 17 and 19 percent
during 2003 and 2020 and reached almost 20 percent making it a bright spot in the GDP performance of
the country during 2020-21, according to the Economic Survey 2020-2021 (Kapil 2021). Dependence of
the country’s economy on agriculture makes the socio-economic welfare of the large population of the
region vulnerable to the vagaries of the ISMR with both the total food production as well as the GDP
strongly correlating with the ISMR (Webster et al. 1998; Parthasarathy et al. 1988; Gadgil and Gadgil
2006; Amat et al. 2018, 2021). The seasonal rainfall anomalies during extremes of ISMR year-to-year
variability manifesting in the large scale ‘floods’ and ‘droughts’ tend to be homogeneous over the country
(Shukla 1987) as also evident from the dominant pattern of the year-to-year variability of the ISMR
(Mishra et al. 2012; Choudhury et al. 2021). Therefore, a forewarning of even the quantum of seasonal
rainfall over the country (ISMR) one season in advance is useful for the policymakers and farmers and
has a long history in India starting with Blanford (1884) and Walker (1924). For the same reason, longer
lead forecasts of ISMR such as at 6-month or 12-month leads would be highly useful for farmers and
policymakers to plan for water resources and for alternative crop strategies to minimize loss. However,
even the one season forecast of ISMR has remained a grand challenge problem (Goswami and Krishnan
2013) and almost no attempt has been made for a longer lead forecast of ISMR. Only recently,
statistically significant but still moderate skills are being achieved (Rao et al. BAMS 2019).
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Potentially the ISMR, as a measure of the Indian summer monsoon, is a highly predictable system
(Charney and Shukla 1981, Saha et al. 2019) and the predictability comes from association of the ISMR
with some predictable slowly varying drivers such as the El Nifilo and Southern Oscillation (ENSO) and the
Atlantic Multi-decadal Oscillation (AMO). One of the challenges in seasonal prediction of ISMR has been
that the interannual correlation between ISMR and the predictors undergo significant epochal variations
(Kripalani and Kulkarni 1997; Krishnamurthy and Goswami 2000; Kumar et al. 1999; Xavier et al. 2007).
This epochal variability is partly due to the inherent significant multi-decadal variability of ISMR (Kriplani
and Kulkarni 1997; Goswami et al. 2006a; Goswami et al. 2015) and the predictors like the ENSO (Zhang
et al. 1997), the AMO, and the Pacific Decadal Oscillations (PDO, Mantua and Hare 2002). A model
decomposition of long time series of instrumental records of ISMR (1813-2006, Sontakke et al. 2008)
indicates that apart from a quasi-biennial mode (2.7-year period), the MDM with period around 65-years is
the only other statistically significant mode of ISMR variability (Rajesh and Goswami 2020). That the
MDM of ISMR with a period of around 65-years is a robust mode of ISMR variability is evident in rainfall
reconstruction from tree ring records for more than 500 years in south India (Goswami et al. 2015) and in
oxygen isotope records (correlated with rainfall amount) in cave deposits from central India/north India
over the past two millennia (Sinha et al. 2011, 2015). The MDM of ISMR influences or modulates the
seasonal predictability through modulation of its interannual variability. From the instrumental record of
ISMR, it has been observed that the frequency of occurrence of floods (droughts) increases (decreases)
by a factor of 2 during the positive (negative) phases of ISMR MDM (Rajesh and Goswami 2020). The
inability to simulate the AMO and ISMR MDM with fidelity by climate models has one roadblock to
improving skill of seasonal predictions systems of today. The CMIP6 models are showing notable
improvement in simulating the AMO as well as ISMR MDM (Choudhury et. al., 2021) with optimism for
improving ISMR prediction in coming years. A better understanding of the drivers of the MDM of ISMR
and associated teleconnection mechanisms is, therefore, critical for simulating the same by climate
models and making advances in seasonal prediction of ISMR.

Its robust existence during the past two millennia indicates that the MDM of ISMR with an approximate
period of around 65 years is a natural mode of the South Asian monsoon system. What drives the MDM
of ISMR has been the subject of intense investigation in recent years. On centennial and millennial time
scales, paleo-evidences indicate strong linkages between mega-droughts of Indian monsoon and cooling
of North Atlantic water (Burns et al. 2003; Gupta et al. 2003). Analysis of instrumental records of ISMR
and SST over the North Atlantic reveal a significant association between the two on multi-decadal time
scales as well (Goswami et al. 2006a) and the teleconnection is supported by coupled model simulations
(Zhang and Delworth 2006; Wang et al. 2009; Luo et al. 2011, 2018). In a recent study, Borah et al. (2020)
show that all the non-El Nifio droughts of ISMR are associated with cooling of the North Atlantic
associated with the negative phases of the AMO. The potential for the AMO to enhance the predictability
of ISMR led to explore the teleconnection mechanisms between the AMO and the seasonal mean ISMR in
several recent studies. Goswami et al. (2006a) proposed that the North Atlantic SST associated with the
AMO sets up a stationary wave and influences the ISMR through modulating the tropospheric
temperature gradient (TTG) over the Indian monsoon region, a mechanism that was supported by a

Page 3/25



number of modeling studies (Lu et al. 2006; Li et al. 2008). The nature of the stationary wave has been
elucidated in the form of a Rossby wave train in some recent studies (Syed et al. 2012; Krishnamurthy
and Krishnamurthy 2016; Borah et al. 2020; Rajesh and Goswami 2020). As the seasonal mean ISMR is
intimately linked to the statistics of sub-seasonal fluctuations such as frequency of occurrences,
variances etc. (Palmar 1994; Goswami et al. 2006b; Saha et al. 2019), how the stationary Rossby wave
train associated with the AMO influences the ISMR through sub-seasonal evolution, however, remains
unclear. For the case of non-El Nifio ISMR droughts, Borah et al. (2020) showed that the modulation of
the large scale circulation by the Rossby wave train clusters the monsoon ‘breaks’ in one phase of the
seasonal cycle leading to a ‘long break’ and resulting in weakening of the ISMR. Generalizing the Borah et
al. (2020) study, Rajesh and Goswami (2020) show that during the positive (negative) phase of the AMOQ,
similar Rossby wave trains cluster ‘active’ (‘break’) phases in one segment of the seasonal cycle leading
to ‘long active (long break’) spells and resulting in strengthening (weakening) of the seasonal mean
ISMR. While the teleconnection is largely through an atmospheric bridge, the possibility of an oceanic
bridge involving the Atlantic Meridional Overturning Circulation (AMOC) is also indicated (Rajesh and
Goswami 2020) while a detailed pathway remains unknown. The Rossby wave train appears to be set up
by episodic barotropic vorticity forcing over the SST anomalies in the North-Atlantic (Borah et al. 2020).
Unlike in the tropics, the extra-tropical SST being largely a response of atmospheric forcing, the driving of
the episodic barotropic vorticity remained unclear. While on high frequency synoptic time scale, indeed
the atmospheric fluxes determine the SST, on time scales longer than 10-days, large scale SST anomalies
could influence meridional surface pressure gradients, displace the storm tracks and create stationary
barotropic vorticity (Rajesh and Goswami 2020; Goswami et al. 2021). Thus, compelling evidence has
emerged for AMO as a major driver of the ISMR MDM. An alternative pathway to the modulation of the
sub-seasonal oscillations by the Rossby wave train has been indicated in some recent studies (Sun et al.
2017, 2018) where it is shown that the AMO could influence ISMR on decadal to multi-decadal time scale
through modulation of western Pacific SST, which in turn influence the Arabian Sea SST through a
regional atmospheric bridge thereby influencing the moisture flux to the Indian monsoon region.

The Indian summer monsoon system, on the other hand, is a coupled ocean atmosphere system where
local ocean-atmosphere interactions not only maintain the annual cycle of SST in the region, the Inter-
Tropical Convergence Zone (ITCZ) and monsoon rainfall (Webster et al. 1998; Wang et al. 2005) but also
actively influence intra-seasonal (Sengupta and Ravichandran 2001; Kembell-Cook and Wang 2001; Lau,
Waliser and Goswami 2012 for a review) and interannual variability of ISMR (Loschnigg and Webster
1999; Meehl and Arblaster 2002; Meehl 1994). The Indian Ocean Dipole Mode (Saji et al. 1999; Webster et
al. 1999; Ashok et al. 2001) is another example of local ocean-atmosphere interactions leading to
interannual variability of climate in the region. While the driving of the ISMR MDM by the AMO through
teleconnections is emerging, the roles of local air-sea interactions or other external forcing (e. g.
anthropogenic aerosols) are unknown. Studies such as Ashok et al. (2004) and Marathe et al. (2021)
have also suggested slower decadal variability in the tropical Indian Ocean modes, at least in the model
world. Ashok et al. (2004), for example, suggest that the decadal variability of the monsoons leads to
decadal 10D-like variability. The decreasing trend of ISMR between 1951 and 2000 has received attention
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and has been the subject matter of several studies lately. Through a modeling study, Bollasina et al.
(2011) indicate that the cooling due to anthropogenic aerosols is responsible for the decreasing trend of
ISMR during the period. The revival of the ISMR after 2002, however, is not consistent with aerosol as
primary forcing (Jin et al. 2017). In another interesting study, Swapna et al. (2014) show that the
increasing trend of SST over the 10 is responsible for the decreasing trend of ISMR during this period
(1951-2007) while the weakening trend of ISMR support the increasing trend of SST, through circulation
and flux changes, indicating positive feedback. Again, the revival of the ISMR after 2002 (Jin et al. 2017)
while the SST is still increasing is also inconsistent solely with positive feedback. Here, we explore a
hypothesis that the ISMR MDM is largely driven by teleconnection with the AMO through modulation of
the regional circulation but the observed periodicity and amplitude of the ISMR MDM is a result of
modification through local air-sea interactions and aerosol forcing.

Our hypothesis is rooted in the following observations. A longer time series of ISMR (Fig. 1) shows that
while there is a decreasing trend of ISMR during 1951-2000, it has an increasing trend during 1901-1950
in the backdrop of an increasing trend of SST during the entire period. The two epochs are approximately
two opposite phases of the ISMR MDM. Therefore, it is clear that the selective focus on the decreasing
trend of ISMR during 1951 and 2007 could be misleading as the increasing trend of ISMR during the
period between 1901 and 1950 is associated with an increasing trend of SST over the 10. As an extension
of Swapna et al. (2014), we ask, what type of ocean-atmosphere interaction is operative in the increasing
phase of the ISMR MDM? Here, we investigate the nature of air-sea interaction during two contrasting
phases of ISMR multi-decadal variability, namely period P1 (1901-1957) when the ISMR has an
increasing trend and period P2 (1958-2007) when the ISMR has a decreasing trend. The insight gained
from this exercise indicates that the air-sea interaction is a stable air-sea interaction where another
positive feedback is triggered by non-local modulation of circulation through teleconnections.

Data And Methods

2.1 Data:

In order to explore ocean-atmosphere interaction over the 10 and Indian monsoon region and its
relationship with ISMR, we extract several ocean variables such as sea surface height, surface current
from the Simple Ocean Data Assimilation version 2 (SODA-2, Giese et al. 2011), the latest 20™" Century
Ocean reanalysis of the SODA data releases for our study period (1901-2007). Upper layer heat content
(HC) is defined as integrated heat over the upper 300 meters of the tropical 10 between 20°S-30°N and
40°9E-110CE. To calculate the heat content, we extract temperature and salinity data with depth from
SODA-2. The sea surface temperature (SST) data is extracted from Hadley Centre Global Sea Ice and Sea
Surface Temperature (HadISST, Rayner 2003). For surface winds, we had a choice of using winds from
ERA-20CM (Hersbach et al. 2015) or NCEP 20™ century reanalysis version 3 (NCEPv3, Slivinski et al.
2019). As the surface winds in the region are coupled with the ISMR, the biases in ISMR from ERA-20CM
or NCEPv3 are closely linked with the biases in the winds in the respective reanalysis. In order to gain

insight into ocean-atmosphere interactions associated with the multi-decadal component of ISMR, the
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reanalyzed winds used need to be consistent with similar multi-decadal variability of reanalyzed ISMR.
The reanalyzed ISMR between 1901 and 2007 from NCEPv3 (Fig. 1c) and ERA-20CM (Fig. S3) indicate
that the simulated NCEPv3 ISMR multi-decadal variability replicates variability of observed ISMR (Fig. 1a)
reasonably well. However, the phases of simulated multi-decadal variability of ERA-20CM ISMR during
1901-1957 and 1958-2007 are opposite to that of observed ISMR. Therefore, we use the NCEPv3 winds in
this study instead of ERA-20CM winds. The seasonal mean net heat fluxes (Q,) are extracted from the
two reanalyses (NCEPv3, ERA-20CM), calculated from net downward shortwave radiation flux, net upward
longwave radiation flux, sensible heat flux, and latent. TropFlux is a hybrid product (Kumar et al. 2012)
where shortwave radiation fluxes are used from International Satellite Cloud Climatology Project (ISCCP)
and uses bias and amplitude corrected ERA-I (10-m winds, 2-m air, and sea temperature, 2-m air relative
humidity, and downward radiative fluxes. In order to get an idea of the biases in the Q,,¢; from reanalysis,
we compare the climatology of the Q¢ from reanalyses with that extracted from the TropFlux data set.
To see integrated moisture convergence and water vapour, we use specific humidity data from NCEPv3.
Daily gridded rainfall data (Rajeevan et al. 2006) with a resolution of 1°x 1° over the land region of India
for the period 1901-2004 are used in this study.

Unless mentioned otherwise, all the datasets and the major part of the analysis pertain to the 1901-2007
period, considering the common availability period.

2.2 Methods:
2.2.1 The EOF analysis and the two feedbacks:

The Bjerknes feedback originally proposed by Bjerknes (1969) for explaining the El Nino and Southern
Oscillation (ENSO) in the Pacific is applicable for the tropical Indian Ocean as well. The equatorial
surface winds driven by east-west surface pressure gradients lead to thermocline adjustment via
equatorial Ekman divergence (convergence) and modify the original equatorial SST gradients. Associated
modification of surface pressure gradients modifies the original equatorial winds. Over the Indian Ocean
during northern summer, the Bjerknes feedback is closely linked with the Indian monsoon as the
monsoon heat source influences the equatorial winds in the region. As the zonal wind forcing at the
equator plays a critical role in the Bjerknes feedback an empirical orthogonal function (EOF) analysis of
zonal mean surface zonal winds averaged between 70°E to 90°E is carried out between 35°S and 35°N
for the period 1901-1957 (P1). The dominant mode (EOF1) explains 38.9% while the EOF2 explains 25.8%
of interannual variance. The dominant EOF not only explains largest interannual variance, the first
principal component (PC1) is significantly correlated with ISMR (r = 0.28, p=0.03) while the PC2 has
insignificant correlation with the ISMR (r =0.05,). For the period 1958-2007 (P2), EOF1 of zonal mean
surface zonal winds explains 49.3% while the EOF2 explains 31.1% interannual variance. During the
period P2 also, the PC1 has statistically significant positive correlation with ISMR (r =0.36, p=0.001) while
the PC2 has insignificant correlation with ISMR. Therefore, we use the dominant EOF of the zonal mean
surface zonal winds and the PC1 to examine the Bjerknes feedback during the two opposite phases of
the ISMR multi-decadal variability.
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The southeasterly cross-equatorial flow and southwesterly flow to the north of the equator as a result of
the Indian monsoon heat source creates a large-scale anticyclonic vorticity around the equator. Year-to-
year variation in the intensity and location of the monsoon heat source would give rise to anomalous
cyclonic or anti-cyclonic large-scale vorticity around the equator. Anomalous upwelling and down welling
forced by the vorticity could influence the SST over the tropical belt. Change in SST over the tropical belt
leads to change in moisture flux transported and converged over the monsoon region and affect the
monsoon that caused the vorticity anomaly over the equator. In order to examine this aspect of ocean
atmosphere interaction, an EOF analysis carried out on the meridional shear of zonally averaged (u wind
from NCEPv3) surface wind and —d[u]/dy (vorticity) over 70°E to 90°E and 35°S to 35°N during JJAS
summer monsoon season for the period P1 as well as for the period P2. The first empirical mode of —
d[u]/dy explains 37.33% and 43.47% of interannual variance for the periods P1 and P2 respectively.
Similar to the case of first principal component of the dominant EOF of the zonal mean surface zonal
wind, the PC1 of dominant EOF of the —d[u]/dy also correlate significantly with ISMR (r =0.28, p =0.03)
for the period P1 but for the second period P2 the correlation between PC1 and ISMR is not significant (r
=0.093, p=0.52)

2.2.2 Regression analysis:

Regression is a useful statistical tool used to determine relationships between two or more dependent
and independent variables. Among all the different regression models we used linear regression in our
study. A linear regression analysis has been done to find how the SST and ISMR is varying with the
zonally averaged (u wind from NCEPv3) surface wind and —d[u]/dy for both the periods P1 and P2.

Results
3.1 Bjerknes Feedback

Bjerknes feedback where surface wind forcing leads to east-west SST gradient in the equatorial Pacific
basin, which in turn feeds back to strengthen the original surface winds is at the heart of the ENSO
(Bjerknes 1969) phenomenon. The Bjerknes feedback has been shown to be also operative in the 10,
leading to the Indian Ocean Dipole mode (Saji et al. 1999; Webster et al. 1999; Murtugudde et al. 2000) on
an interannual time scale. Here, we explore if a similar feedback contributes to the multi-decadal
variability of the ISMR.

The modification of the SST, sea-level and HC distribution by surface winds through equatorial dynamics
of Wyrtki jets (Wyrtki 1973) is an important component of ocean-atmosphere interaction in this region.
For the period 1901-1957 (referred to as P1), the first empirical mode of zonally averaged surface winds
explains 38.9% variance while the same for the period 1958-2007 (referred to as P2) explains 49.3%
variance. The leading EOF (henceforth, referred to as EOF1) of surface winds zonally averaged over 70°E
to 90°E during the two periods P1and P2 (Fig. 2a and Fig. 2b) show some interesting differences in large
scale circulation during the two periods. While the deep equatorial belt was dominated by higher

frequency of occurrence of easterly forcing during the early period (1901-1957), the later period is
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dominated by higher frequency of occurrence of westerly wind forcing (Fig. S1b,c). The corresponding
PCs (Fig. 2c,d), while having large interannual variation, do not indicate any significant trend. The
propensity of zonal mean easterly wind forcing at the equator during the period P1, and westerly forcing
in the period P2 contribute to the easterly trends of surface winds at the equator in the period P1 between
700E and T100KE (Fig. 3a) as against westerly trends of surface winds at the equator during the period P2
(Fig. 3b) between 60°E and 90°E. The trends in the zonal winds are also consistent with trends of SST
during both periods (Fig. 3a,b). Much stronger and wide-spread increasing trends of SST during P2
compared to that during P1 are consistent with a weaker increasing trend of area averaged SST in Fig. 1b
compared to a relatively stronger increasing trend of area averaged SST during the period (P2) . Also,
maximum SST trend during P2 is over the west-central equatorial 10, as noted in earlier studies (Swapna
et al. 2014; Koll et al. 2014).

A regression of PC1 of zonally averaged zonal winds on seasonal mean rainfall anomaly over India
during the periods P1 and P2 (Fig. 4a,b) show that the zonal wind variations during P1 are associated
with the increasing tendency of rainfall over the core monsoon region and west of the Western Ghat
consistent with Fig. T1a, while that during period P2 are associated with a decreasing tendency of rainfall
over core monsoon and west of Western Ghat, consistent with Fig. Ta. The SST anomaly patterns
associated with the zonal wind variations (regression with PC1) during the period P1 (P2) (Fig. 4c,d) are
closely similar to a positive (negative) 10D pattern (Saji et al., 1999). They are consistent with easterly
(westerly) driving as evident from Fig. S1a (Fig. S1a). During an easterly driving regime, shoaling of
thermocline to the east gives rise to cold anomaly while depression of thermocline to the west gives rise
to warm anomaly. The situation reverses during the westerly driving regime. During P1 the SST dipole has
a cold anomaly over a smaller region in the east and a much larger region of warm anomaly to the west.
In contrast, during the period P2, the SST dipole has a warm anomaly over a smaller region in the east,
with a much larger region of cold anomaly to the west (Fig. 4c,d). The overall easterly (westerly) driving
during P1 (P2) is due to the fact that the equatorial zonal winds averaged over (700E to 90IE, 5KS to 5EN)
have higher propensity of easterly zonal wind during P1, while the propensity of westerly zonal wind is
higher during P2 ( Fig. S1d,e). The easterly (westerly) winds at the equator during P1 (P2) is a result of the
stronger (weaker) than normal ISMR while the warmer (colder) SST to the western part of 10 as a result of
equatorial dynamics leads to higher (lower) moisture flux to the continent and tends to strengthen
(weaken) the monsoon further. This is how the Bjerknes feedback at the equator and ISMR, an off-
equatorial heat source are linked. The decadal variability of the IOD has also been documented (e.g.,
Ashok et al. 2001, 2004).

We find westward surface currents around the equatorial belt, forced by predominantly easterly surface
winds during the period P1 (Fig. 5a). Associated equatorial upwelling and coastal upwelling depletes the
HC in the eastern 10 flanked by a horseshoe pattern build-up of HC in the western 10 (Fig. 5a). The off-
equatorial heat depletion in the eastern 10 seems to be due to episodes of equatorial upwelling Kelvin
waves that were driven by the easterly winds, and subsequently travelled as a coastal Kelvin wave
towards north after hitting the eastern boundary and radiated westwards as Rossby waves. The signature
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of a coastal Kelvin wave in the Bay of Bengal is rather apparent (Fig. 5a). Similarly, the buildup of HC in
the eastern 10 during the period P2 seems to be due to episodes of down welling equatorial Kelvin waves
driven by the westerly zonal winds, which subsequently have travelled north and south as coastal Kelvin
waves and radiated as down welling as Rossby waves (Fig. 5b). Even in this case, coastal Kelvin waves
in the Bay of Bengal could be seen clearly. The surface currents during the period P2 are also consistent
with surface wind forcing. However, the westward surface currents in this case are limited to the central
and eastern equatorial 10 east of 70°E (Fig. 5b). This explanation is supported by the sea surface height
(SSH) anomaly patterns associated with zonal mean zonal winds (regression with PC1) over the two
periods (Fig. 5¢,d).

3.2 Large-scale vorticity of surface zonal winds and SST

While there is considerable evidence that a Bjerknes feedback operates in maintaining the MDM of ISMR,
the large increasing trend of SST during the later period (P2) cannot be explained by this feedback. In
fact, purely due to this feedback SST should have a decreasing trend. As ISMR is a result of low-level
moisture convergence, a higher SST over the 10 would be associated with higher moisture availability and
should be associated with stronger ISMR. Therefore, the association of a decreasing trend of ISMR and
an increasing trend of SST over the 10 during this period is counterintuitive. Hence, instead of the
increasing trend of SST over the 10 during this period driving the decreasing trend of ISMR, it is more
likely that the large-scale wind changes associated with the decreasing trend of ISMR is driving the
increasing trend of SST. We propose that the change in large-scale vorticity due to the weakening of
monsoon circulation during that period played a role in the warming trend. There are two other
manifestations of low-level atmospheric circulation, which might have potentially contributed to SST
changes over the |0 during the P2. Firstly, apart from the equatorial zonal wind, the large-scale low-level
monsoon winds over |0, are associated with off-equatorial vorticity, which leads to deepening or shoaling
of the thermocline. This mechanism is particularly effective in influencing SST in regions where the mean
thermocline is shallow, such as the eastern equatorial 10 and the central Indian Ocean thermocline dome,
south of the equator. The other factor that could also contribute to the SST changes is the net heat flux
(Q,e1) at the surface as a result of surface wind changes and changes in the cloudiness. In this section,

we explore the contributions of large-scale vorticity.

The leading EOFs of vorticity of zonal mean surface zonal winds during the monsoon season for the
periods P1 and P2 are shown in Fig. 6a,b while the corresponding PCs for the two periods are shown in
Fig. 6¢,d. From Fig. 6¢ and 6d, we see a decreasing trend during P1 and an increasing trend during P2,
both statistically significant at 0.05 level from a Mann-Kendall test. The leading EOFs (Fig. 6a,b) indicate
important changes in the large-scale monsoon winds over the |10 from P1 to P2. While during P1, a
cyclonic vortex centered on the equator dominated the wind pattern, during P2, a pair of cyclonic vortices
on either side of the equator seems to dominate the low-level wind pattern. This is clearly evident in the
vector wind pattern associated with the PC1 of vorticity arising from meridional shear of the zonal mean
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surface zonal winds (Fig. 7a,b). A regression of the PC1 of vorticity of zonal mean surface zonal winds
on seasonal mean rainfall over India (Fig. 6e,f) indicates that the significantly increasing trend of the PC1
contributes to a strong negative trend of ISMR during the period P2. On the other hand, during the period
P1, the decreasing trend of the PC1 is associated with a positive trend of rainfall anomaly pattern over
most of India strengthening ISMR more in the early part of the period and less during the latter part of the
period resulting in a relatively weak increasing trend of ISMR consistent with Fig. 1a.

Furthermore, a regression of JJAS SST on to the PC1 indicates a positive SST anomaly in the central 10
(Fig. 7c) induced by the trend in low level meridional shear of zonal wind (-d[u]/dy) in P1. Similar
regression analysis for the P2 indicates a positive SST anomaly in the equatorial eastern 10 flanked by
colder SST anomaly in the western equatorial 10 (Fig. 7d). The larger positive SST anomaly over the
central south-equatorial 10 is consistent with the cyclonic low-level wind vortex sitting over the
thermocline dome in that region. In period P2, large-scale vorticity forcing increases the positive SST
anomaly over a much larger region (Fig. 7d) compared to that due to direct zonal wind forcing at the
equator (Fig. 4d). The positive SST anomaly over the Bay of Bengal is consistent with the northern
component of the twin cyclonic vortices (Fig. 7b). The fact that PC1 during the P2 has a significant
increasing trend indicates that the large-scale vorticity of the monsoon flow over the region does
contribute to the increasing trend of SST over 10 during P2.

Like the SST over the tropical 10, the vertically integrated moisture content in the atmosphere over the
Indian monsoon region (70°E-100°E, T0°N-30°N) is increasing steadily from 1901 to 2007 (Fig. S2a)
while the ISMR has an increasing trend during P1 and a decreasing trend during P2. As the ISMR is driven
largely by moisture convergence rather than local moisture availability, an increasing trend of vertically
integrated moisture convergence during P1 and decreasing trend of the same during P2 are consistent
with trends of ISMR during the two periods (Fig. S2b). What makes the moisture convergence decrease
during P2 in the backdrop of the moisture content of the atmosphere that has been increasing? The
answer lies in the changes of the large-scale winds. The wind changes have led to a decreasing trend of
wind convergence (Fig. S2c) that forced the moisture convergence to decrease even when the moisture
content was increasing.

3.3 Net heat flux (Q,;) driving of SST trend

However, the increasing trend of SST during P2 is much stronger than that during P1 (Fig. 1b) the
changes in SST forced by Bjerknes feedback or by the large-scale vorticity of zonal winds appear
inadequate to explain the differences in the trends. As we noted, the two different phases of the ISMR
MDM P1 and P2 are associated with significant changes in the large-scale circulation, particularly
surface winds. These changes in circulation are bound to be associated with changes in cloudiness
distribution. As a result, it may be natural to expect that the net heat flux (Q,,;) would have similar

changes during the two periods. The climatological mean Q¢ during JJAS over the tropical |10 between

208S and 200N is positive (~10Wm, see Fig. 8) leading to seasonal warming of SST over the region
during the summer season. Here we explore if the changes in Q¢ over the period could also contribute to
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an increasing trend of the seasonal warming leading to an overall weaker increasing trend of SST during
P1 and a stronger increasing trend during P2.

The net heat flux into the ocean is a sum of different heat exchange processes at ocean surface, which
includes heating due to net shortwave radiation (NSWR), net outgoing longwave radiation (NLWR),
sensible heat flux (SHF), and latent heat flux (LHF). Climatologically, the first one is the contributor to the
heat gain of the ocean, and all the other processes lead to heat loss, except for SHF, which depends on
air—sea temperature difference. From all the four variables net heat flux can be calculated using the
formula:

Qpet = NSWR-NLWR-LHF-SHF (1)
Where, NSWR = DSWR - USWR and NLWR = ULWR - DLWR, together with,

Downward shortwave radiation (DSWR), Upward shortwave radiation (USWR), Upward longwave
radiation (ULWR), Downward longwave radiation (DLWR) (e.g., Pokhrel et al. 2020)

A simple thermodynamic understanding about the upper ocean is that the rate of change of SST is
proportional to net heat flux. Such a balance can be expressed as

hCp (6/6t SST) = Qe (2)

where, h is the depth of the mixed layer, C is the specific heat of seawater; p is the density of seawater
and Q, is net heat flux (e.g., Sengupta et al. 2001). Here mixed layer depth is calculated using the
density criteria (Kazunori et al. 2004), i.e., starting from the upper- most available observation to the depth

at which the density is equal or greater than a specific value (e.g., 0.125 g/cm?® ) than that at the surface
is considered as the mixed layer depth (MLD).

To be consistent with SST and precipitation (ISMR), here we use the mean JJAS Q¢ between 1901 to

2007 to estimate its contribution to the SST trends during the two periods, P1 and P2. However, we
recognize that all heat flux products, whether from reanalysis or ‘observations’ have their own biases
(Pokhrel et al. 2020). To have an idea of biases in Q¢ climatology from NCEPv3, we compare the

climatology of JJAS Q,,; from NECPv3 for the two periods (Fig. 8a,b) with those from two other flux

products namely from ERA-20CM (Fig. 8c,d) and TROPFlux (Fig. 8e). The TROPFlux data is available only
for the period 1979-2018 and hence its climatology may be compared only with P2.

It is interesting to note that the Q,,.; averaged over the tropical 10 region, defined as bound by 50KE-100KE,
201S-200N, during P1 has a statistically significant decreasing trend (p = 0.001) from about +13 Wm™ to
about +5 Wm? while that during P2 has a weakly significant increasing trend from about +24 Wm2 to
about +29 Wm (Fig. 9a,b). The net heat flux leads to a statistically significant (p = 0.003) decreasing
trend of mixed layer temperature (Fig. 9¢) resulting in approximately 0.5°C decrease during P1. It is
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interesting to note that the Q,,.; during the P2 drive a statistically significant increasing trend (p = 0.02) of

mixed layer depth temperature resulting in an increase of 0.75°C during P2 (Fig. 9d).

Discussion

A rather strikingly-decreasing trend of ISMR during the period 1951 to 2000 encouraged several studies to
investigate potential drivers for this trend. Ocean-atmosphere interaction involving increasing trend of
SST over the 10 during that period (Swapna et al. 2014) and a stronger cooling of the land surface
compared to the 10 by anthropogenic aerosols (Bollasina et al. 2011) have been invoked to explain the
trend. However, reconstruction of Indian monsoon rainfall over the past two millennia indicate that such a
decreasing trend of ISMR over 50-60 years could as well be part of a multi-decadal variability of the ISMR
(Goswami et al. 2015; Sinha et al. 2011). The primary driving of the multi-decadal variability of the ISMR
with an approximate period of 65 years appears to be external forcing through its strong association with
a similar multi-decadal variability of North Atlantic SST (Goswami et al. 2006; Rajesh and Goswami 2020;
Krishnamurthy and Krishnamurthy 2016; Naidu et al. 2020). As local ocean-atmosphere interactions play
an important role in maintaining the annual cycle and interannual variability of ISMR and SST over the IO,
they may play a role in modifying the multi-decadal variability as well. While the work of Swapna et al.
(2014) provide a glimpse of how local ocean-atmosphere feedback could operate on one phase of multi-
decadal variability of ISMR, similar ocean-atmosphere interaction in opposite phases of the ISMR multi-
decadal variability has been lacking. In addition to the primary Bjerknes feedback between equatorial
wind forcing and SST, large-scale vorticity feedback could also influence the SST in the Indian monsoon
region with an off-equatorial heat source. The changes in climatological winds and cloudiness due to
changes in the monsoon heat source on multi-decadal time scale could influence SST over the |10
differently during opposite multi-decadal phases of ISMR through the two local feedbacks. Therefore, it is
important to unravel and contrast the ocean-atmosphere feedback at least in two opposite phases of
ISMR multi-decadal variability.

The period between 1901 and 2007, with a decreasing phase of ISMR between 1958 and 2007 and an
increasing phase during 1901 and 1957, approximately represent two opposite phases of ISMR multi-
decadal variability, and provide us an opportunity to examine local ocean-atmosphere interaction during
two opposite phases of ISMR. For this purpose, surface winds that are internally consistent with the data
sets of monsoon rainfall ISMR) and SST are essential. The observed ISMR is not necessarily consistent
with various independent analyses of surface winds and SST, as observed precipitation is not used to
constrain these analyses. Therefore, we need to use a 20" Century reanalysis for our study of air-sea
interaction, where the analysis system generated precipitation over the Indian region during the summer
monsoon season is consistent with surface winds and the winds are consistent with SST. For our
analysis of the air-sea interaction to be meaningful to observed multi-decadal variability of ISMR,
however, the analyzed ISMR, from the 20" century reanalysis should have multi-decadal variability
similar to that from the observed during the period between 1901 and 2007. We find that the reanalyzed-
ISMR in NCEPv3 (Fig. 1c) follows the multi-decadal variability in the observed ISMR (Fig. 1a) during the
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period, while the multi-decadal variability from the ERA-20CM (Fig. S3) during the same period has
phases that are opposite to those of ISMR. For this reason, winds from NCEPv3 and SST from HadISST,
where the SST is consistent with the winds have been used in this study to examine air-sea interaction
during two opposing phases of ISMR.

Our results indicate that the basic multi-decadal oscillation of ISMR may be driven by teleconnection with
North-Atlantic SST, but a local Bjerknes feedback and a large-scale vorticity help to maintain and modify
it. During the increasing phase of ISMR (P1), a higher propensity of occurrence of a positive IOD pattern
of SST anomaly with cold water in the eastern Indian I0 while warm waters in the western 10 reinforce
easterly equatorial surface winds that drive them. During a decreasing phase of ISMR (P2), just the
opposite happens, with a higher propensity of negative 10D events reinforcing the westerly equatorial
surface winds that drive them. The Bjerknes feedback, however, does not contribute significantly to the
trend of SST over the 10 on multi-decadal time scale. We also note that the SST influences the ISMR and
ISMR influences the winds and cloudiness distribution and thereby influences the Q... Therefore, the
JJAS mean Qnet contains some of the other two contributions through ISMR influence. It is also noted
that over most part of the 10, SST is driven by the Q,,; except small regions over the coasts of Somalia
and Sumatra where upwelling is important. Thus, the Qnet largely drives the SST over 20°S and 20°N
and 70°E and 100°E. While we could comment on their contributions to the SST (or mixed layer trends),
therefore, it is not fair to combine them to estimate a combined contribution to the SST trend. With this
caveat, we examined the contributions of vorticity feedback and Q¢ to the stronger increasing trend of

SST over |0 during P2 and find that it is consistent with additive contributions to increasing trends of SST
due to the large-scale vorticity forcing and SST forced by Q¢ during the period. However, a similar
comparison during the period P1 indicates that the small increasing trend of SST in the backdrop of a
decreasing trend of Q¢ could not be explained by the weak increasing trend of contributions from

vorticity feedback. The result indicates that some of the missing physics such as advection and
entrainment may be important in maintaining the weak increasing trend of SST during P1. The overall
weak increasing SST trend during P1 is consistent with the weaker increasing SST trends over most
regions and a weak negative trend south of 10°S between 60KE to 80KE (Fig. 3a). It may be noted that the
first order influence on the SST trend comes from the climatological JJAS mean Q,; (Fig. 8e) with
cooling tendency south of 10°S and warming tendency north of it. The negative or weak positive SST
trend south of 10°S and positive SST trend north of it during both periods (Fig. 3) are consistent with the
spatial structure of climatological Q¢ The actual trend of SST at any location will also depend on the

mean mixed layer depth with the deepest mixed layer being south of 10°S and shallower mixed layers
over the equatorial belt and North Bay of Bengal (Fig. S4b). The largest SST trends (Fig. 3) around the
equatorial belt are again consistent with this. The trends of Q,,; and mixed layer depth (MLD) during the

period P1 (Fig. S4 a,c) add second-order trends on the SST. The negative SST south of trend 10°S during
P1 is a result of the combined influence of the two forces.
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The anomalous changes in the climatological low-level winds during the two periods, P1 and P2 (Fig.
7a,b) are the key to explain the differences in air-sea interaction during the two opposite phases of the
ISMR multi-decadal oscillation. Once the background winds for a phase are established (like that during
P1), the air-sea interaction sets up SST distribution conducive for strong monsoon and perpetuates the
easterlies at the equator until the wind climatology is changed to westerlies to reverse this process. We
envisage the transition to take place in the following way. Let us start with the positive AMO phase and
increasing trend of ISMR like the period P1. When the NA SST MDM changes to a negative phase, it starts
introducing westerly zonal wind forcing over the equator. However, the ISMR is still in the positive MDM
phase supporting easterly zonal winds at the equator. Therefore, it takes a few years for the westerly to
weaken the ISMR so that it start supporting the westerly forcing at the equator and to establish the
opposite feedback. A negative phase of ISMR MDM gets established. As shown by Rajesh and Goswami
(2020) there is a phase lag between the ISMR multi-decadal mode (MDM) and the North-Atlantic SST
MDM with the latter leading by 8 years. This lag is consistent with the proposed mechanism of transition.
And hence, two specific periods of ISMR like P1 and P2 could not be exactly matched with two phases of
the AMO.
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Figures

Figure 1

(@) Indian summer monsoon rainfall (ISMR) using Rajeevan et al. (2006) rainfall data normalized by its
own interannual standard deviation from 1901 to 2007. The linear trends for the periods 1901 to 1957
(P1) and 1958 to 2007 (P2) are shown. (b) Sea surface temperature averaged over (50°E-100°E, 20°S-
20°N) during June-September for the period 1901 to 2007 normalized by its own standard deviation. (c)
Normalized ISMR similar to (a) but from NCEPv3.
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Figure 2

(a) Latitude dependence of the dominant EOF (EOF1) of zonal wind zonally averaged between 70°E and
90°E for the period P1, (b) Same as (a) but for the period P2, (c) Time series of Principal component
(PC1) corresponding to EOF1 for the period P1, (d) Same as (c) but for the period P2. The linear trends of
the PCs shown by straight lines are statistically insignificant (see p-values).
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Figure 3

(a) Trends in sea surface temperature (SST in °C/57- years) and NCEPv3 surface winds (m s ' / 57-years)
in the tropical Indian Ocean (10) for the summer monsoon season for period P1. (b) Same as (a) but for
period P2. (SST values at grid points are multiplied by 100 for better representation of the colour bar)

Figure 4

(a) Regressed anomaly pattern of seasonal mean rainfall with PC1 of surface zonal wind averaged
between 70°E and 90°E during P1. (IMD rainfall data and wind from NCEP v3), (b) Same as (a) but during

P2. (IMD rainfall data and wind from NCEPv3) Units: (mm day™ )(ms™ ). (c) Regressed anomaly pattern
of seasonal mean SST with PC1 of surface zonal wind averaged between 70°E and 90°E during P1. (d)

Same as (c) but during P2. Units ( °C)(ms )™

Figure 5

(a) Surface currents associated with zonal mean zonal wind variability (regression with PC1) during P1
(vectors) together with associated upper ocean heat content (HC) (color), (b) Same as (a) but for P2.

Units: HC, (Jm 2)(ms )7, currents, (ms 7 )(ms )7, (c) Same as (a) but for sea surface height (SSH) for
P1 and (d) same as (c) but for P2. Units: m(ms " ).
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b)EOF1,1958-2007
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(@) The meridional profile of the leading EOF of (-d[u]/dy) from NCEP-v3 averaged from 70°E to 90°E
along a section extending from 35°S to 35°N for the summer monsoon season over the periods (a) 1901-
1957 and (b)1958-2007. The time series of the corresponding PC1 for both periods (c) 1901-1957 and (d)
1958-2007. The pattern of rainfall anomalies was obtained by regressing rainfall upon PC1 of (-d[u]/dy)

for the summer monsoon season for the periods (e) 1901-1957 and (f) 1958-2007. Unit: (mm day™)(s)
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Figure 7

Patterns of 850 hPa winds obtained by regressing wind upon PC1 of (-d[u]/dy) for the summer monsoon
season during the periods, (a) 1901-1957 and (b) 1958-2007. Unit:(ms™)(s), Patterns of SST anomalies
obtained by regressing SST upon PC1 of (-d[u]/dy) for the summer monsoon season for the periods (c)
1901-1957 and (d) 1958-2007. Unit:(°C)(s)

Figure 8

Comparison of JJAS climatology of Q,,.; from three flux products. (a) From NCEPv.3 for P1, (b) From
NCEPVv.3 for P2, (c) From ERA-20CM for P1, (d) From ERA-20CM for P2 and (e) From TROPFlux for 1979-
2018. (Wm ?2)
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Figure 9

(a) Time series of JJAS mean Q,,; from NCEPV.3 averaged over (50°E-100°E, 20°S-20°N) for P1 together

with its linear decreasing trend (blue line). (b) Same as (a) but for P2. Unit:(W.m 2 ). The linear increasing
trend is shown by the red line. (c) Time series of mixed layer temperature during the JJAS season forced
by Q,,¢: during P1. The decreasing linear trend is shown by the blue line. (d) Same as (c) but during P2.

The increasing linear trend is shown by the red line. Unit: (°C. day ' ). The p-values for statistical
significance of the linear trends are shown.
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