1 Charles, A. J.et al. Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems 12, n/a-n/a, doi:10.1029/2010GC003426 (2011).
2 Dunkley Jones, T.et al. Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum. Earth-Science Reviews 125, 123-145, doi:https://doi.org/10.1016/j.earscirev.2013.07.004 (2013).
3 Frieling, J.et al. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum. Science Advances 3, e1600891, doi:10.1126/sciadv.1600891 (2017).
4 McInerney, F. A. & Wing, S. L. The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. Annual Review of Earth and Planetary Sciences 39, 489-516, doi:10.1146/annurev-earth-040610-133431 (2011).
5 Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259-262, doi:10.1130/0091-7613(1997)025<0259:Abogit>2.3.Co;2 (1997).
6 Pagani, M.et al. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442, 671-675, doi:http://www.nature.com/nature/journal/v442/n7103/suppinfo/nature05043_S1.html (2006).
7 Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283, doi:10.1038/nature06588 (2008).
8 Frieling, J.et al. Widespread Warming Before and Elevated Barium Burial During the Paleocene-Eocene Thermal Maximum: Evidence for Methane Hydrate Release? Paleoceanography and Paleoclimatology 34, 546-566, doi:10.1029/2018PA003425 (2019).
9 Handley, L., Crouch, E. M. & Pancost, R. D. A New Zealand record of sea level rise and environmental change during the Paleocene–Eocene Thermal Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 185-200, doi:https://doi.org/10.1016/j.palaeo.2011.03.001 (2011).
10 Harding, I. C.et al. Sea-level and salinity fluctuations during the Paleocene–Eocene thermal maximum in Arctic Spitsbergen. Earth and Planetary Science Letters 303, 97-107, doi:https://doi.org/10.1016/j.epsl.2010.12.043 (2011).
11 Kender, S.et al. Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth and Planetary Science Letters 353-354, 108-120, doi:https://doi.org/10.1016/j.epsl.2012.08.011 (2012).
12 Sluijs, A.et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218-1221, doi:10.1038/nature06400 (2007).
13 Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E. & Bohaty, S. Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30, 1067-1070, doi:10.1130/0091-7613(2002)030<1067:wtfftf>2.0.co;2 (2002).
14 Zeebe, R. E., Ridgwell, A. & Zachos, J. C. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nature Geoscience 9, 325-329, doi:10.1038/ngeo2681 (2016).
15 Granger, C. W. J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 37, 424-438, doi:10.2307/1912791 (1969).
16 Kodra, E., Chatterjee, S. & Ganguly, A. R. Exploring Granger causality between global average observed time series of carbon dioxide and temperature. Theoretical and Applied Climatology 104, 325-335, doi:10.1007/s00704-010-0342-3 (2011).
17 Stern, D. I. & Kaufmann, R. K. Econometric analysis of global climate change. Environmental Modelling & Software 14, 597-605, doi:https://doi.org/10.1016/S1364-8152(98)00094-2 (1999).
18 Sun, L. & Wang, M. Global Warming and Global Dioxide Emission: An Empirical Study. Journal of Environmental Management 46, 327-343, doi:https://doi.org/10.1006/jema.1996.0025 (1996).
19 Triacca, U. On the use of Granger causality to investigate the human influence on climate. Theoretical and Applied Climatology 69, 137-138, doi:10.1007/s007040170019 (2001).
20 Triacca, U. Is Granger causality analysis appropriate to investigate the relationship between atmospheric concentration of carbon dioxide and global surface air temperature? Theoretical and Applied Climatology 81, 133-135, doi:10.1007/s00704-004-0112-1 (2005).
21 Attanasio, A., Pasini, A. & Triacca, U. A contribution to attribution of recent global warming by out-of-sample Granger causality analysis. Atmospheric Science Letters 13, 67-72, doi:https://doi.org/10.1002/asl.365 (2012).
22 Davidson, J. E. H., Stephenson, D. B. & Turasie, A. A. Time series modeling of paleoclimate data. Environmetrics 27, 55-65, doi:https://doi.org/10.1002/env.2373 (2016).
23 Gay-Garcia, C., Estrada, F. & Sánchez, A. Global and hemispheric temperatures revisited. Climatic Change 94, 333-349, doi:10.1007/s10584-008-9524-8 (2009).
24 Jiang, B., Liang, S. & Yuan, W. Observational evidence for impacts of vegetation change on local surface climate over northern China using the Granger causality test. Journal of Geophysical Research: Biogeosciences 120, 1-12, doi:https://doi.org/10.1002/2014JG002741 (2015).
25 Kaufmann, R. K., Kauppi, H. & Stock, J. H. Does temperature contain a stochastic trend? Evaluating conflicting statistical results. Climatic Change 101, 395-405, doi:10.1007/s10584-009-9711-2 (2010).
26 Wright, J. D. & Schaller, M. F. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum. Proceedings of the National Academy of Sciences 110, 15908-15913, doi:10.1073/pnas.1309188110 (2013).
27 Grossman, E. L. in The Geologic Time Scale (eds Felix M. Gradstein, James G. Ogg, Mark D. Schmitz, & Gabi M. Ogg) 181-206 (Elsevier, 2012).
28 Cui, Y.et al. Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nature Geoscience 4, 481, doi:10.1038/ngeo1179
https://www.nature.com/articles/ngeo1179#supplementary-information (2011).
29 Stock, J., Sims, C. & Watson, M. Inference in Linear Time Series Models with Some Unit Roots. Econometrica 58, 113-144 (1990).
30 Dickey, D. A. & Fuller, W. A. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica 49, 1057-1072, doi:10.2307/1912517 (1981).
31 Toda, H. Y. & Yamamoto, T. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250, doi:https://doi.org/10.1016/0304-4076(94)01616-8 (1995).
32 Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. 2nd International Symposium on Information Theory, Armenia, 2-8 September 1971, 267-281 (1973).
33 Berger, J. O. & Wolpert, R. L. The Likelihood Principle. Vol. 6 (IMS Business Office, 1988).
34 Hannan, E. J. & Quinn, B. G. The Determination of the Order of an Autoregression. Journal of the Royal Statistical Society. Series B (Methodological) 41, 190-195 (1979).
35 Pfaff, B. Analysis of Integrated and Cointegrated Time Series with R. 2 edn, 190 (Springer-Verlag New York, 2008).
36 Elliott, G., Rothenberg, T. J. & Stock, J. H. Efficient Tests for an Autoregressive Unit Root. Econometrica 64, 813-836, doi:10.2307/2171846 (1996).
37 Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. & Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics 54, 159-178, doi:https://doi.org/10.1016/0304-4076(92)90104-Y (1992).
38 MacKinnon, J. G. Numerical Distribution Functions for Unit Root and Cointegration Tests. Journal of Applied Econometrics 11, 601-618 (1996).
39 Peter, C. B. P. & Perron, P. Testing for a Unit Root in Time Series Regression. Biometrika 75, 335-346, doi:10.2307/2336182 (1988).
40 McMillan, D. G. & Wohar, M. E. The relationship between temperature and CO2 emissions: evidence from a short and very long dataset. Applied Economics 45, 3683-3690, doi:10.1080/00036846.2012.729955 (2013).
41 Stokke, E. W., Jones, M. T., Tierney, J. E., Svensen, H. H. & Whiteside, J. H. Temperature changes across the Paleocene-Eocene Thermal Maximum – a new high-resolution TEX86 temperature record from the Eastern North Sea Basin. Earth and Planetary Science Letters 544, 116388, doi:https://doi.org/10.1016/j.epsl.2020.116388 (2020).
42 Secord, R., Gingerich, P. D., Lohmann, K. C. & MacLeod, K. G. Continental warming preceding the Palaeocene–Eocene thermal maximum. Nature 467, 955-958, doi:10.1038/nature09441 (2010).
43 Dickens, G. R. Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Clim. Past 7, 831-846, doi:10.5194/cp-7-831-2011 (2011).
44 Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965-971, doi:10.1029/95pa02087 (1995).
45 Milkov, A. V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews 66, 183-197, doi:https://doi.org/10.1016/j.earscirev.2003.11.002 (2004).
46 DeConto, R. M.et al. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484, 87, doi:10.1038/nature10929
https://www.nature.com/articles/nature10929#supplementary-information (2012).
47 Lourens, L. J.et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083-1087, doi:10.1038/nature03814 (2005).
48 Lunt, D. J.et al. A model for orbital pacing of methane hydrate destabilization during the Palaeogene. Nature Geoscience 4, 775-778, doi:10.1038/ngeo1266 (2011).
49 Storey, M., Duncan, R. A. & Swisher, C. C. Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic. Science 316, 587-589, doi:10.1126/science.1135274 (2007).
50 Svensen, H.et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542, doi:10.1038/nature02566 (2004).
51 Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, doi:10.1029/2003pa000908 (2003).
52 Higgins, J. A. & Schrag, D. P. Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum. Earth and Planetary Science Letters 245, 523-537, doi:http://dx.doi.org/10.1016/j.epsl.2006.03.009 (2006).
53 Zachos, J. C.et al. Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. Science 308, 1611-1615, doi:10.1126/science.1109004 (2005).
54 Head, M. L., Holman, L., Lanfear, R., Kahn, A. T. & Jennions, M. D. The Extent and Consequences of P-Hacking in Science. PLOS Biology 13, e1002106, doi:10.1371/journal.pbio.1002106 (2015).
55 Stassen, P., Thomas, E. & Speijer, R. P. Integrated stratigraphy of the Paleocene-Eocene thermal maximum in the New Jersey Coastal Plain: Toward understanding the effects of global warming in a shelf environment. Paleoceanography 27, doi:https://doi.org/10.1029/2012PA002323 (2012).
56 Zachos, J. C.et al. The Palaeocene-Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, 1829-1842, doi:doi:10.1098/rsta.2007.2045 (2007).
57 Zachos, J. C.et al. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data. Geology 34, 737-740, doi:10.1130/g22522.1 (2006).
58 Saltzman, M. R. & Thomas, E. in The Geologic Time Scale (eds Felix M. Gradstein, James G. Ogg, Mark D. Schmitz, & Gabi M. Ogg) 207-232 (Elsevier, 2012).
59 Triacca, U. Non-causality: The role of the omitted variables. Economics Letters 60, 317-320, doi:https://doi.org/10.1016/S0165-1765(98)00118-9 (1998).
60 Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Revised Carbonate-Water Isotopic Temperature Scale. GSA Bulletin 64, 1315-1326, doi:10.1130/0016-7606(1953)64[1315:Rcits]2.0.Co;2 (1953).
61 Carmichael, M. J.et al. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum. Global and Planetary Change 157, 114-138, doi:https://doi.org/10.1016/j.gloplacha.2017.07.014 (2017).
62 Frieling, J.et al. Thermogenic methane release as a cause for the long duration of the PETM. Proceedings of the National Academy of Sciences 113, 12059-12064, doi:10.1073/pnas.1603348113 (2016).