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Abstract—This paper presents a multi-unmanned aerial vehicle1

(UAV)-assisted mobile edge computing (MEC) system, where2

multiple UAVs are used to serve mobile users (MUs). We aim3

to minimize the overall energy consumption of the system by4

planning the trajectories of UAVs. To plan the trajectories of5

UAVs, we need to consider the deployment of hovering points6

(HPs) of UAVs, their association with UAVs, and their order for7

each UAV. Therefore, the problem is very complicated, as it is8

non-convex, nonlinear, NP-hard, and mixed-integer. To solve the9

problem, this paper proposed an evolutionary trajectory planning10

algorithm (ETPA), which comprises three phases. In the first11

phase, variable-length GA is adopted to update the deployments12

of HPs for UAVs. Accordingly, redundant HPs are removed by the13

remove operator. Subsequently, differential evolution clustering is14

adopted to cluster HPs into different clusters without knowing the15

number of HPs in advance. Finally, a GA is proposed to construct16

the order of HPs for UAVs. The experimental results on a set of17

eight instances show that the proposed ETPA outperforms other18

compared algorithms in terms of the energy consumption of the19

system.20

Index Terms—Mobile edge computing, unmanned aerial vehi-21

cle, evolutionary algorithm, multi-chrome genetic algorithm.22

I. INTRODUCTION23

With the development of mobile communication systems,24

a huge number of resource-intensive and latency-sensitive ap-25

plications are emerging, such as virtual reality, online gaming,26

and so on. Such applications are usually sensitive to latency27

and require huge computational resources. however, due to28

limitations on mobile users (MUs) devices, it is very difficult29

to execute these tasks on them.30

Mobile edge computing (MEC) is a promising technology31

to address the above-mentioned issue. It can provide service32

with low latency and high reliability near or at MUs. It can33

execute tasks of MUs at the nearby edge cloud and sends back34

the results to MUs [1]. Due to the shorter physical distance35

between MEC’s server/edge cloud and MUs, it consumes less36

energy as compared to mobile cloud computing. However, it is37

still lacking in fulfilling the requirements of MUs, as the loca-38

tion of the edge cloud is usually fixed and cannot be adjusted39
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flexibly according to the requirements of MUs. Therefore, it 40

cannot provide timely services during a natural disaster as the 41

terrestrial communication link may be broken/lost. 42

To satisfy this ever-increasing demand, unmanned aerial 43

vehicle (UAV) is regarded as one of the most promising tech- 44

nologies to achieve these ambitious goals. Compared to the 45

traditional communication systems that utilize the terrestrial 46

fixed base stations, UAV-aided communication systems are 47

more cost-effective and likely to achieve a better quality of 48

service due to their appealing properties of flexible deploy- 49

ment, fully controllable mobility, and low cost. In fact, with 50

the assistance of UAVs, the system performance (e.g., data rate 51

and latency) can be significantly enhanced by establishing the 52

line-of-sight communication links between UAVs and MUs. In 53

addition, through dynamically adjusting the flying and hover- 54

ing location, UAVs are capable of improving communication 55

performance in wireless communications. 56

Recently, due to the above-mentioned advantages, UAVs 57

have been extensively used in various fields, such as wireless 58

communication [2] [3], military [4] [5], surveillance and 59

monitoring [6] [7], delivery of medical supplies [8], and rescue 60

operations [9] [10]. Very recently, UAVs have been used to 61

enhance the capabilities of MEC systems. For example, Wang 62

et al. [11] studied a multi-UAV-enabled MEC system, where 63

several UAVs are deployed as flying edge clouds for large- 64

scale MUs. Zhang et al. [12] proposed a UAV-assisted MEC 65

for efficient multitask scheduling to minimize completion time. 66

Garg et al. [13] studied the application of a UAV-empowered 67

MEC system in cyber-threat detection of smart vehicles. 68

Moreover, to fully exploit the potential of UAV-assisted 69

MEC systems, some researchers have studied appropriate path 70

planning and trajectory designing of UAVs. For instance, 71

Wang et al. [14] proposed a multi-agent deep reinforcement 72

learning-based trajectory planning algorithm for UAV-aided 73

MEC framework, where several UAVs having different tra- 74

jectories fly over the target area and support the ground 75

MUs. Wu et al. [15] studied a practical scenario of UAVs in 76

an orthogonal frequency-division multiple access (OFDMA) 77

system. They proposed an iterative block coordinate descent 78

approach for optimizing the UAV’s trajectory and OFDMA re- 79

source allocation to maximize the minimum average through- 80

put of MUs. Diao et al. [16] optimized joint trajectory and 81

data allocation to minimize the maximum energy consumption. 82

Jeong et al. [17] studied the bit allocation and trajectory 83

planning under latency and energy budget constraints. Hu et 84

al. [18] developed a UAV-assisted relaying and MEC system, 85

where the UAV can act as the MEC server or the relay. They 86

proposed a joint task scheduling and trajectory optimization 87

algorithm to minimize the weighted sum energy consumption 88
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of UAVs and MUs subject to task constraints. Yang et al. [19]89

presented the sum power minimization problem for a UAV-90

enabled MEC network. Huang et al. [20] studied multi-UAV-91

assisted MEC system, where the UAVs act as edge servers92

to provide computing services for Internet of Things devices.93

Zeng et al. [21] proposed an efficient algorithm to optimize94

the trajectory of UAV, including the hovering locations and95

duration. They formulated the problem as a traveling salesman96

problem to minimize the energy consumption of UAV.97

From the above introduction, it is clear that variable num-98

bers of UAVs have rarely been considered in the current99

studies. The deployment of an appropriate number of UAVs100

can improve the system’s performance. The main contributions101

of this paper are summarized as follows:102

• A new multi-UAV-assisted MEC system is proposed and103

formulated to minimize the energy consumption of the104

system by considering the deployment including the num-105

ber and locations of hovering points (HPs), the number106

of UAVs, and their association with HPs, and the order107

of HPs.108

• The deployment of HPs is addressed by proposing a109

genetic algorithm (GA) with a variable length individual.110

Specifically, evolutionary operators like crossover and111

mutation are modified to handle variable-length individ-112

uals.113

• An evolutionary trajectory planning algorithm (ETPA) is114

proposed, that consists of four phases. First, a variable-115

length GA (VLGA) [22] is adopted to optimize the116

deployment of HPs. Subsequently, redundant HPs which117

have no MUs to be served, are removed by using the118

remove operator. After that, UAVs are associated with119

HPs via differential evolution clustering (DEC) algorithm120

[23]. Accordingly, a GA is adopted to construct the order121

of HPs for UAVs.122

• Extensive experiments have been carried out on a set123

of ten instances with up to 200 MUs. The experimental124

results show the effectiveness of the proposed ETPA.125

The remainder of this paper is organized as follows. In Section126

II, we introduce the system model, including the problem127

formulation of the proposed system. Section III presents the128

details of our proposed algorithm ETPA. In Section IV, the ex-129

perimental studies are discussed. Finally, Section V concludes130

this paper.131

II. SYSTEM MODEL132

As shown in Fig. 1, we consider there are i ∈ N =133

{1, 2, ..., N} MUs and j ∈ M = {1, 2, ...,M} UAV. UAV134

flies over all the MUs to collect the data. We assume that the135

UAV will hover at some points for some time and the MU136

can send the sensing data to the UAV. We assume UAV will137

hover over t ∈ Tj = {1, 2, ..., Tj} HPs. Therefore, one has138

aij [t] = {0, 1},∀i ∈ N ,∀t ∈ Tj ,∀j ∈M, (1)

where aij [t] = 1 denotes that the i-th MU decides to send its139

sensing data to j-th UAV at t-th HP, while aij [t] = 0 indicates140

X

Y

Z

(Xj,Yj,H)

(xi,yi)

(X1,Y1,H)(X2,Y2,H)

...

Fig. 1: Collection Framework of multi-UAV-assisted MEC
system

otherwise. Then, one has 141

Tj∑
t=1

M∑
j=1

aij [t] = 1, i ∈ N (2)

which denotes that one MU should choose one UAV at each 142

HP to send its sensing data. 143

We assume that the MU always sends data to the closest 144

UAV at each HP. Then, one has 145

aij [t] =

1, if(i, j, t) = argmin
i∈N ,j∈M

(dijt),

0, otherwise.
(3)

Assume that at each HP, j-th UAV can accept at most Uj 146

MUs, Therefore, one has 147

N∑
i=1

aij [t] ≤ Uj , t ∈ Tj , j ∈M (4)

We assume that i-th MU may collect Di amount of data 148

which intend to send it to the UAV. The UAV may stop at 149

T points at the air in which each stop may last for Tmax
150

seconds, where Tmax is the fixed value. 151

Then, the time to send the data from MU to UAV at the 152

t-th HP is as 153

TTr
i [t] =

Di

rij [t]
, ∀j ∈M, t ∈ Tj (5)

where rij [t] is the data rate which is given by (14). Also, define 154

Fi as the CPU cycles which this task may need to process. 155

Then, one can have the process time of the data in UAV as 156

TC
i [t] =

Fi

fij [t]
, ∀j ∈M,∀t ∈ Tj (6)

where fij [t] is the computation capacity of the UAV assigned 157

to each data processing procedure, where we have 158

N∑
i=1

fij [t] ≤ fmax, j ∈M, t ∈ Tj (7)
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which fmax is the maximal computing power the UAV can159

provide to each MU. Also, we have160

Ti[t] = TC
i [t] + TTr

i [t], i ∈ N , t ∈ T (8)

Then, one can have161

Tj [t]
H = max

i∈N
{TC

i [t] + TTr
i [t], j ∈M, t ∈ T }, (9)

Assume that the coordinate of i-th MU is as (xi, yi) and the162

coordinate of the j-th UAV at t-th HP is as (Xj [t], Yj [t], H).163

Also, assume the UAV’s trajectory can be characterized by a164

sequence of location qj [t] = [Xj [t], Yj [t], H]T , where H is a165

fixed value. In addition, all UAVs start from the same initial166

position q[0] and finally come back to the same initial position167

q[0] after visiting all the HPs. Also, we have168

||qj [t+ 1]− qj [t]||2 ≤ S2
max, t = 0, ..., Tj , (10)

where Smax = Vmax · Tmax is the maximum horizontal169

distance which the UAV can travel and Vmax is the maximum170

speed.171

Then, the horizontal distance between the i-th MU and the172

UAV is as173

Rij [t] =
√
(Xj [t]− xi)2 + (Yj [t]− yi)2,∀i ∈ N ,∀t ∈ N

(11)
Also, the distance between the i-th MU and the UAV at the174

t-th HP is as175

dij [t] =

√
Rij [t]

2
+H2,∀i ∈ N ,∀t ∈ N (12)

Then, the channel power gain can be given as176

hij [t] =
β0

dij [t]
2 (13)

where β0 denotes the channel power gain at the reference177

distance 1m.178

If MUs decide to offload to the UAVs, the data rate can be179

given as180

rij [t] = Blog2

(
1 +

pi
uehij [t]

σ2

)
(14)

where σ2 is the noise power and puei is the transmission power,181

which is constrained by182

pi
ue ≤ Pmax (15)

The energy consumption of the i-th MU for sending data183

to the j-th UAV at t-th HP is given by184

ETr
ij [t] = puei TTr

i [t] =
puei Di

rij [t]
, ∀j ∈M, t ∈ Tj (16)

The whole energy consumption of all MUs is expressed as185

EMU =

N∑
i=1

M∑
j=1

Tj∑
t=1

aij [t]E
Tr
ij [t] (17)

Assume the flying energy of the UAV is proportional to186

the flying distance/flying time, then the flying energy can be187

calculated as188

EF
j =

PF

V

Tj−1∑
t=1

||qj [t+ 1]− qj [t]||2 (18)

where V is the velocity of UAVs. 189

Also, for the hovering energy, one can have 190

EH
j = PH

Tj−1∑
t=1

TH
j [t], (19)

where PH denotes the hovering power of the UAV. 191

The whole energy consumption of all UAVs is expressed as 192

EUAV =

M∑
j=1

(EF
j + EH

j + C) (20)

where C is the fixed cost including take off, land in, and 193

maintenance cost for adding UAVs. 194

Then, we can have the optimization problem as follows.

P : min
aij [t],Tj ,qj [t],pue

i ,fij [t],M
(EUAV + αEMU ) (21a)

subject to:
aij [t] = {0, 1},∀i ∈ N ,∀t ∈ Tj ,∀j ∈M, (21b)
Tj∑
t=1

M∑
j=1

aij [t] = 1, i ∈ N , (21c)

N∑
i=1

aij [t] ≤ Uj , t ∈ Tj , j ∈M, (21d)

N∑
i=1

fij [t] ≤ fmax, j ∈M, t ∈ Tj (21e)

Ti[t] ≤ Tmax, (21f)
||qj [t+ 1]− qj [t]||2 ≤ S2

max, t = 0, ..., N, (21g)
pi

ue ≤ Pmax, (21h)
Xmin ≤ Xj [t] ≤ Xmax, ∀j ∈M, t ∈ Tj , (21i)
Ymin ≤ Yj [t] ≤ Ymax, ∀j ∈M, t ∈ Tj . (21j)

Where the objective function is the sum of hovering energy 195

and flying energy of UAVs and C8 and C9 present the lower 196

and upper bounds of X-axis and Y-axis, respectively. 197

III. PROPOSED ALGORITHM 198

A. Motivation 199

By analyzing the proposed system model and problem 200

formulation in Section II, it is clear that (21(a)) is a non- 201

convex, NP-hard, and nonlinear optimization problem. (21(a)) 202

can not be solved by traditional optimization methods due to 203

the following challenges. 204

• To solve (21(a)), we need to consider the number of 205

UAVs, the number of HPs and their locations, which MU 206

will send data to which HP, which UAV will visit which 207

HPs, and in which order the UAV will visit the assigned 208

HPs. Therefore, it is a complicated/complex problem to 209

be tackled. 210

• (21(a)) contains integer decision variable M and the 211

number of HPs Tj for UAV j, binary variable aij , and 212

continuous variables (Xj and Yj). Therefore, it is a mixed 213

decision variable problem, which is challenging to be 214

solved [11] [24]. 215
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• Since, the number of UAVs is unknown in prior, the216

clustering of HPs into different clusters requires an un-217

supervised scheme (i.e., free of initialization/parameter-218

free clustering algorithm) that can group closely spaced219

HPs into different clusters automatically and can also220

simultaneously find an optimal number of clusters/UAVs221

[25].222

In this paper, we proposed an algorithm called ETPA to223

design the trajectories of UAVs. The proposed algorithm224

consists of four phases: the deployment of HPs, removing225

redundant HPs, the association between UAVs and HPs, and226

the order of HPs for UAVs.227

The main technical advantages of the proposed algorithm228

are given as.229

• Considering the strong coupling among the deployment230

of HPs, the association between UAVs and HPs, and the231

order of HPs. ETPA plans the trajectories of UAVs at each232

iteration through four phases: updating the deployment of233

HPs, removing redundant HPs, the association between234

UAVs and HPs, and constructing the optimal trajectories235

for UAVs.236

• In ETPA, the deployment of HPs is solved by using237

VLGA in [22]. Each individual represents the whole238

deployment; thus, the whole population represents a set of239

deployments. Since the length of individuals is variable,240

we modified the common crossover and mutation opera-241

tors to handle variable-length individuals for updating the242

deployment of HPs.243

• The optimization problem (21(a)) includes mixed deci-244

sion variables i.e., integer, binary and continuous decision245

variables. By analyzing the problem, we transformed it246

into subproblems so that there is no mixed variables247

involved. We solved each subproblem independently by248

proposing an efficient algorithm.249

B. ETPA250

The framework of ETPA is given in Algorithm 1. In the251

initialization, the locations of HPs are produced random-252

ly, forming an initial population POP = (X1, Y1), (X2,253

Y2),...,(Xmax, Ymax). Subsequently, redundant HPs are re-254

moved to restrict UAVs from visiting HPs having no MU255

by using the algorithm given in Algorithm 3. Accordingly,256

DEC algorithm in Algorithm 4 is adopted to group HPs257

into different clusters and a UAV is assigned to each cluster.258

Afterward, GA in Algorithm 5 is adopted to construct the259

order of HPs in each cluster. After that, POP is evaluated via260

Eq. (21(a)), if it is feasible, the initial population is generated261

successfully; otherwise, the initialization is repeated until it262

is feasible or the number of fitness evaluations (FEs) is263

not less than maximum FEs (FEsmax). Accordingly, an264

offspring population POPoff is first produced via VLGA265

in Algorithm 2 during the evolution. Accordingly, redundant266

HPs are removed by using the algorithm in Algorithm 3.267

Then, the HPs in the individuals of POPOff are grouped268

into different clusters by using DEC algorithm in Algorithm 4.269

Accordingly, the trajectories of UAVs are constructed via GA270

in Algorithm 5. Accordingly, the new population POPOff is271

Algorithm 1 General Framework of ETPA
1: FEs = 0;
2: repeat
3: Generate Random population POP ;
4: Update HPs by removing HPs with no MU using Algorithm 3;
5: Determine the association between UAVs and HPs in via DEC in

Algorithm 4;
6: Construct the order of HPs for each UAV by using GA given in Algorithm

5;
7: Evaluate POP via Eq. (21(a));
8: FEs = FEs+ 1;
9: while FEs < FEsmax do

10: Produce an offspring population POPOff via GA given in Algorithm
2;

11: for i=1:
∣∣POPOff

∣∣ do
12: Update HPs by removing HPs with no MU using Algorithm 3;
13: Determine the association between UAVs and HPs in via DEC in

Algorithm 4;
14: Construct the order of HPs for each UAV by using GA given in

Algorithm 5;
15: Evaluate POPOff via Eq. (21(a));
16: FEs = FEs + 1;
17: end for
18: Select best feasible individuals from POP and POPOff with the

greatest performance improvement;
19: end while
20: Output: the best solution.

Algorithm 2 Updating Deployment of HPs
1: POPOff = ∅;
2: for k = 1: 2: |POP | do
3: x1, x2 ← Apply Tournament selection to select parents;
4: P ← random probability;
5: if P ≤ Pc × Pc then
6: y1, y2 ← Apply SBX crossover on x1, x2;
7: else if P ≤ 1− Pc then
8: y1, y2 ← Apply Single point crossover;
9: else

10: y1, y2 ← Apply both SBX and single point crossover;
11: end if
12: {O1, O2} ← Apply polynomial mutation on y1, y2;
13: POPOff = POPOff ∪ {O1, O2};
14: end for
15: Output: POPOff ;

Algorithm 3 Removing HPs with no MU
1: U ← Find unique association between MUs and HPs;
2: D ← Find the set difference between the index set of HPs/POP and U ;
3: Updated POP ← Update HPs by removing HPs from POP with

indexes D;

evaluated using Eq. (21(a)). Finally, we select the best feasible 272

individuals among the individuals of POP and POPOff with 273

the greatest performance improvement. This process continues 274

until FEs ≥ FEsmax. 275

C. The Deployment of HPs 276

For the deployment of HPs, a variable-length GA (VLGA) 277

in [22] is adopted. GA is a simple, most popular, and effective 278



5

EA and has been successfully applied in many fields [26].279

More specifically, different from [22], tournament selection280

[27], simulated binary crossover (SBX) [28] [29] [30], and281

polynomial mutation [31] operators were adopted in ETPA to282

generate an offspring population POPoff (i.e., locations of283

new HPs). The individuals of POPoff is adopted to update284

parent population POP (i.e., locations of HPs can be updated).285

Thus, locations of HPs can be updated by using the above286

process.287

Since each individual in GA represents a location of HP.288

Therefore, the whole population represents the locations of all289

HPs. Hence, the number of HPs is equal to the length of the290

individual in the population. Thus, the length of individuals291

is kept variable during evolution while updating the number292

of HPs i.e., the individual length can be increased, kept293

unchanged, or reduced. By using Algorithm 2, we construct294

the offspring population POPoff . More specifically, we de-295

signed special crossovers operators to handle variable-length296

individuals.297

If the new population was composed of the newly created298

descendants only, the old population’s best individual may be299

lost. To eliminate this deficiency, a new operator, the so-called300

elitism was introduced. This operator ensures that the previous301

population’s best individual will get into the new population302

without any modification, thus the best solution found so far303

will survive during the whole evolutionary process.304

D. Removing Redundant HPs305

After association MUs with closest HPs via Eq. 3, we have306

some redundant HPs which have no MU associated with them.307

We update the number of HPs by removing redundant HPs308

that have no MU to be served by using Algorithm 3. First,309

we find unique association U between MUs and HPs (line 1),310

then we calculate the set difference D between the index set of311

HPs/POP ( index set of POP = 1 to size(POP )) and U (line312

2), and finally remove HPs from the POP with indexes given313

in D (line 3). By removing redundant HPs, we restrict UAVs314

from visiting redundant HPs, as a result, the flying energy can315

be saved. In addition, it can shorten the running time of ETPA.316

E. Association between UAVs and HPs317

In this section, we group HPs into different clusters, and318

then a UAV is associated with the HPs of each cluster.319

However, since the number of UAVs is unknown, therefore320

we need a clustering algorithm that does not require the321

number of clusters/UAVs prior. Clustering can be stated as322

a particular kind of NP-hard grouping optimization problem323

[32]. Therefore, it can be solved by optimization algorithms324

and metaheuristics. Specifically, evolutionary algorithms are325

widely used for solving NP-hard problems, which provide326

near-optimal solutions to such problems in a reasonable time327

[33]. Therefore, a large number of EAs for solving clustering328

problems have been proposed in the past. EAs are based329

on the optimization of some objective function (i.e., the so-330

called fitness function) that guides the evolutionary search331

[33]. ETPA adopted a DEC algorithm in [23] to automatically332

cluster HPs into different clusters. Specifically, DE/rand/1 and 333

binomial crossover [34], [35] are used to produce offspring. 334

Like other EAs, it is also based on a fitness function. The 335

fitness function is computed using the Davies-Bouldin index 336

(DBI) [36]. The DBI is a function of the ratio of the sum of 337

within-cluster scatter to between-cluster separation [37]. The 338

scatter within Ci cluster is computed as 339

Si,q =

(
1

‖Ci‖
∑
t∈Ci

{||x− zi||q2}

) 1
q

, (22)

where Si,q is the qth root of the qth moment of the HPs in 340

cluster i with respect to their mean, and is a measure of the 341

dispersion of the HPs in cluster i. Specifically, Si,1 is the 342

average Euclidean distance of the vectors in class i to the 343

centroid of class i, zi is the centroid of Ci , and is defined as 344

zi = 1/ni
∑
x∈Ci

x (23)

, and ni is the cardinality of Ci, i.e., the number of HPs in 345

cluster Ci . The Minkowski distance of order t between cluster 346

Ci and Cj is defined as 347

dij,t =

{
p∑

s=1

|zis − zjs|t
} 1

t

= ‖zi − zj‖t, (24)

The DBI is then defined as 348

DBI =
1

K

K∑
i=1

Ri,qt, (25)

where 349

Ri,qt = max
j,j 6=i

{
Si,q + Sj,q

dij,t

}
, (26)

The objective is to minimize the DBI for getting proper 350

clustering of the HPs. 351

The DEC algorithm is explained in Algorithm 4. First, for 352

each individual in the population POP , a random number j in 353

the range [jmin; jmax] is generated. This individual is assumed 354

to present the centers of j clusters. For initializing these 355

centers, j HPs are chosen randomly from the set of HPs. These 356

HPs are distributed randomly in the POP . After that, the DBI 357

is calculated by using Eq. (25). Subsequently, the offspring 358

population is generated by using DE operators. Accordingly, 359

the new population is evaluated by using Eq. (25). Population 360

with minimum DBI is selected as a parent population for 361

the next iteration. This process continues until the maximum 362

number of iterations MaxIter is reached. Finally, the best 363

solution with minimum DBI is selected as the best solution, 364

hence the number of clusters with proper clustering is obtained 365

(i.e., Cj clusters are obtained, where j represents the number 366

of clusters). 367

F. The order of HPs 368

In this subsection, we design the optimal trajectories for 369

all UAVs. In fact, this problem can be dealt with as a 370

traveling salesmen problem. In ETPA, we proposed GA to 371

construct the optimal order of HPs for all UAVs. GA is a 372
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Algorithm 4 DEC Algorithm
1: Initialize: Set of HPs POP , nPop=10, [jmin; jmax], MaxIter=50,

number of HPs taken from POP K=10, andPc=0.2;
2: for For each individual in POP do
3: Generate j in the range [jmin; jmax]
4: Choose j HPs randomly from POP ;
5: Distributes these j HPs randomly in the individual;
6: end for
7: for each individual in POP do
8: Extract j centers stored in it;
9: cluster each point by assigning it to the cluster corresponding to the

closest center;
10: FPOP ← Compute DBI via Eq. (25);
11: end for
12: BestF itness ← Select best fitness from FPOP ;
13: BestSolution ← Best solution from POP having fitness value

BestF itness ;
14: for iter = 1:Max− Iter do
15: for i=1:nPop do
16: A ← randperm(nPOP );
17: a, b, c ← select three random numbers from A;
18: POPO ← Apply DE operators to produce offspring population;
19: for each individual in POPO do
20: Extract j centers stored in it;
21: cluster each point by assigning it to the cluster corresponding

to the closest center;
22: FO ← Compute DBI via Eq. (25);
23: end for
24: if FO < BestF itness then
25: POP ← POPO ;
26: BestF itness←FO ;
27: BestSolution← Best solution from POPO having fitness

FO ;
28: end if
29: end for
30: end for
31: Output: Cj clusters and associate a UAV with each cluster (∀j ∈M);

popular EA that ensures good convergence in solving traveling373

salesman problem [38]. Specifically, Swap, Flip, and Slide374

operators are used in GA to produce offspring populations.375

The implemented operators are given below.376

• Swap: selects two HPs and swaps them. Selected HPs377

can belong to the same or different routes.378

• Flip/Inversion: selects a sub-route and reverses the visit-379

ing order of the HPs/UAVs belonging to it.380

• Slide/Insertion: selects an HP and inserts it in another381

place. The route where it is inserted is selected randomly.382

It is possible to create a new itinerary with this single383

customer, with probability.384

It can be seen from Algorithm 5, the algorithm requires385

two input sets, the coordinates of the locations of HPs, and386

the distance matrix which contains traveling distances among387

HPs. Furthermore, it requires some parameter determination,388

like population size, maximum iteration number, and some389

additional constraints. After these steps, the initial population390

can be created, which consists of randomly created individuals.391

The fitness function simply summarizes the overall route392

lengths for each UAV inside an individual. The selection is393

tournament selection, where tournament size i.e. the number394

Algorithm 5 Local Optimization Algorithm for UAV Route
Optimization
1: Initialize: Cluster Cj , POPSize, MaxIter, Distance Matrix Dmat,

and maxtour;
2: for iter = 1:Max− Iter do
3: n=Size(T, 1);
4: for p = 1:POPSize do
5: d = 0;
6: d = d + Dmat(1, End);
7: for k = 2:n do
8: d = d + Dmat(POP (p, k − 1), POP (p, k));
9: end for

10: d(p) = d;
11: end for
12: MinDist = min(d(p));
13: POPNew ← Generate New POP by using GA operators i.e., flip,

swap, and slide given in Algorithm 6;
14: end for

Algorithm 6 GA Operator with flip, slide, and swap
1: for p = 8:8:pop-size do
2: Select 8 individuals from POP ;
3: for k = 1:8 do
4: Flip ← Apply Flip to flip 2 HPs;
5: Swap ← Apply Swap to transpose HPs from two random individ-

uals;
6: Slide← Apply Slide operator to slide the HPs of random individual;
7: end for
8: end for
9: OUTPUT: NEW POP POPN

of individuals who compete for survival is 8. Therefore popula- 395

tion size must be divisible by 8. The winner of the tournament 396

is the member with the smallest fitness, this individual is 397

selected for a new individual creation, and this member will 398

get into the new population without any modification. After se- 399

lecting parents from the population, GA’s operators i.e., Swap, 400

Flip, and Slide are applied to produce offspring population. 401

The population with minimum tour (i.e., minimum distance) 402

is selected as a parent population for the next iteration. Finally, 403

the best routes/solutions are obtained for UAVs. 404

IV. SIMULATION RESULTS 405

1) Experimental Settings: The parameter setting of the 406

proposed multi-UAV-assisted MEC system is presented in 407

Table I. We have tested ten instances with up to 200 MUs 408

to evaluate the performance of ETPA. We assumed that all the 409

MUs are distributed randomly in a 1000 m × 1000 m square 410

TABLE I: Parameters Setting

Parameter Value Parameter Value
Di; (i ∈M) [1, 103]MB P 0.1 W

PH 1000 Vmax 20 m/s
PF 1000 σ2 -174 dBm
B 1 MHz α 10000
β0 2.8 HU 200

Xmax 1000 Ymax 1000
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Fig. 2: Evolution of the mean EC obtained by ETPA and DEVIPS-ETPA on eight instances over 20 runs.

TABLE II: Experimental results of ETPA and
DEVIPS-ETPA in terms of mean EC over 20 runs

N ETPA DEVIPS-ETPA
60 2.11E+07 (3.61E+04) 2.13E+07 (9.17E+04) ↑
80 2.16E+07 (4.57E+04) 2.18E+07 (9.08E+04) ↑

100 2.22E+07 (9.28E+04) 2.24E+07 (9.20E+04) ↑
120 2.24E+07 (5.69E+04) 2.26E+07 (9.50E+04) ↑
140 2.30E+07 (7.88E+04) 2.33E+07 (8.17E+04) ↑
160 2.37E+07 (8.38E+04) 2.39E+07 (1.09E+05) ↑
180 2.40E+07 (9.74E+04) 2.45E+07 (1.02E+05) ↑
200 2.47E+07 (1.26E+05) 2.52E+07 (1.30E+05) ↑
↑/↓/≈ 8/0/0

region. The maximum number of fitness evaluations (FEsmax411

) is set to 5000 and 20 runs are implemented independently412

on each algorithm. The mean energy consumption and the413

standard deviation of the proposed system over 20 runs are414

denoted by mean EC and Std, respectively. Furthermore, we415

performed the Wilcoxon rank-sum test at 0.05 significant level.416

In the experimental results, we used ↑, ↓, and u to show417

that ETPA performs significantly better than, worse than, and418

similar to its competitors.419

TABLE III: Experimental results of ETPA and ETPA-W in
terms of mean EC over 20 runs

N ETPA ETPA-W
60 2.11E+07 (3.61E+04) 2.12E+07 (8.54E+04) ↑
80 2.16E+07 (4.57E+04) 2.18E+07 (1.21E+05) ↑
100 2.22E+07 (9.28E+04) 2.24E+07 (1.61E+05) ↑
120 2.24E+07 (5.69E+04) 2.27E+07 (1.60E+05) ↑
140 2.30E+07 (7.88E+04) 2.37E+07 (1.71E+05) ↑
160 2.37E+07 (8.38E+04) 2.44E+07 (2.79E+05) ↑
180 2.40E+07 (9.74E+04) 2.48E+07 (1.82E+05) ↑
200 2.47E+07 (1.26E+05) 2.56E+07 (2.43E+05) ↑
↑/↓/≈ 8/0/0

A. Effectiveness of The Deployment of HPs 420

The deployment of HPs is addressed by proposing a GA 421

with variable-length individuals. To prove its effectiveness, 422

we replaced the proposed GA in ETPA with DEVIPS [35] 423

and developed a variant called DEVIPs-ETPA. In DEVIPS- 424

ETPA, the deployment of HPs is updated by using DEVIPS 425

in [35]. The experimental results of ETPA and DEVIPS-ETPA 426

are presented in Table II, which show that the proposed ETPA 427

outperforms DEVIPS-ETPA in terms of mean EC. Further- 428
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Fig. 3: Evolution of the mean EC obtained by ETPA and ETPA-W on eight instances over 20 runs.

more, as summarized at the bottom of Table II, ETPA provides429

better statistical results than DEVIPS-ETPA. Moreover, Figure430

2 presents the evolution of the mean EC obtained by ETPA431

and DEVIPS-ETPA on four instances. Figure 2 shows that432

ETPA converges faster than DEVIPS-ETPA and maintains433

better performance during evolution. The better performance434

of ETPA is attributed as: since variable length GA in ETPA435

can always predict the optimal number of HPs quickly, thus436

leading to the performance improvement.437

TABLE IV: Experimental results of ETPA and
Kmeans-ETPA in terms of mean EC over 20 runs

N ETPA Kmeans-ETPA
60 2.11E+07 (3.61E+04) 2.40E+07 (4.03E+05) ↑
80 2.16E+07 (4.57E+04) 2.62E+07 (2.55E+05) ↑

100 2.22E+07 (9.28E+04) 2.84E+07 (6.18E+05) ↑
120 2.24E+07 (5.69E+04) 3.09E+07 (4.98E+05) ↑
140 2.30E+07 (7.88E+04) 3.34E+07 (7.99E+05) ↑
160 2.37E+07 (8.38E+04) 3.74E+07 (1.32E+06) ↑
180 2.40E+07 (9.74E+04) 3.82E+07 (1.06E+06) ↑
200 2.47E+07 (1.26E+05) 4.28E+07 (1.39E+06) ↑
↑/↓/≈ 8/0/0

TABLE V: Experimental results of ETPA and ETPA-Greedy
in terms of mean EC over 20 runs

N ETPA ETPA-Greedy
60 2.11E+07 (3.61E+04) 2.85E+07 (5.85E+05) ↑
80 2.16E+07 (4.57E+04) 3.13E+07 (4.59E+05) ↑
100 2.22E+07 (9.28E+04) 3.58E+07 (9.96E+05) ↑
120 2.24E+07 (5.69E+04) 3.83E+07 (6.68E+05) ↑
140 2.30E+07 (7.88E+04) 4.05E+07 (6.93E+05) ↑
160 2.37E+07 (8.38E+04) 4.64E+07 (1.14E+06) ↑
180 2.40E+07 (9.74E+04) 4.55E+07 (1.08E+06) ↑
200 2.47E+07 (1.26E+05) 4.99E+07 (9.61E+05) ↑
↑/↓/≈ 8/0/0

B. Effectiveness of Removing Redundant HPs 438

To restrict UAVs from visiting redundant HPs, we design 439

an operator called remove redundant HPs in Algorithm 3. 440

To show the effectiveness of this operator, we have tested 441

ETPA with and without remove operator, where ETPA without 442

remove operator is denoted by ETPA-W. The experimental 443

results of ETPA and ETPA-W are listed in Table III, which 444

show that the performance of ETPA is better than ETPA- 445

W in terms of mean EC on all eight instances. In addition, 446
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Fig. 4: Evolution of the mean EC obtained by ETPA and Kmeans-ETPA on eight instances over 20 runs.

ETPA provides statistically better results than ETPA-W, as447

can be seen at the bottom of Table III. To further evaluate448

its effectiveness, Figure 3 presents the evolution of the mean449

EC of ETPA and ETPA-W on eight instances, which shows450

that ETPA converges faster than ETPA-W and maintains better451

performance during evolution. The reason why ETPA performs452

better than ETPA-W is straightforward: removing redundant453

HPs is to restrict UAVs from visiting extra/redundant HPs,454

thus saving the flying energy of the system.455

C. Effectiveness of The Association between UAVs and HPs456

To associate UAVs with HPs, this paper adopted DEC457

algorithm given in Algorithm 4. To show the effectiveness458

of the association between UAVs and HPs, we have replaced459

DEC with K-means algorithm [39] and designed an algorithm460

called Kmeans-ETPA. The experimental results of ETPA and461

Kmeans-ETPA are listed in Table IV, which show that the462

performance of ETPA is better than Kmeans-ETPA in terms463

of mean EC on all eight instances. In addition, ETPA provides464

statistically better results than ETPA-W, as can be seen at465

the bottom of Table IV. To further evaluate its effectiveness,466

Figure 4 presents the evolution of the mean EC of ETPA and467

Kmeans-ETPA on eight instances, which shows that ETPA 468

converges faster than Kmeans-ETPA and maintains better 469

performance during evolution. The reason why ETPA performs 470

better than Kmeans-ETPA is straightforward: DEC algorithm 471

in ETPA can group closely spaced HPs into the same cluster 472

automatically without knowing the number of clusters, that 473

reduces the EC of the system. In addition, it can also predict 474

the optimal number of UAVs, which reduces the extra cost 475

and improves the system EC. 476

D. Effectiveness of GA 477

To construct the order of HPs for UAVs, this paper adopted 478

GA in Algorithm 5. To show the effectiveness of GA, we 479

have replaced GA with a greedy algorithm and designed an 480

algorithm called ETPA-Greedy. The experimental results of 481

ETPA and ETPA-Greedy have listed in Table V, which show 482

that the performance of ETPA is better than ETPA-Greedy 483

in terms of mean EC on all eight instances. In addition, 484

ETPA provides statistically better results than ETPA-W, as 485

can be seen at the bottom of Table V. To further evaluate its 486

effectiveness, Figure 5 presents the evolution of the mean EC 487

of ETPA and Kmeans-ETPA on eight instances, which shows 488
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Fig. 5: Evolution of the mean EC obtained by ETPA and ETPA-Greedy on eight instances over 20 runs.

that ETPA converges faster than ETPA-Greedy and maintains489

better performance during evolution. The reason why ETPA490

performs better than ETPA-Greedy is straightforward: GA in491

ETPA is a famous evolutionary algorithm that is known for492

its good convergence in solving NP-hard problems.493

V. CONCLUSION494

This paper has presented a multi-UAV-assisted MEC system,495

where multiple UAVs have been used to serve MUs. A496

trajectory planning problem was formulated as an optimiza-497

tion problem with the aim of minimizing the system energy498

consumption. To solve the problem, we have proposed an499

evolutionary trajectory planning algorithm that consisted of500

three phases. In the first phase, a genetic algorithm with501

variable length individual in population was adopted for the502

deployment of HPs. This algorithm updates the number and503

location of HPs by using genetic operators designed for504

variable-length individuals. Afterward, the association between505

UAVs and HPs was determined by adopting DEC algorithm.506

Finally, a GA was adopted to construct the trajectories of all507

UAVs with the aim of reducing their flight distances. The508

experimental results on eight instances up to 200 MUs have509

shown that the proposed ETPA performs better than other510

compared variants in terms of minimizing the system energy 511

consumption. 512
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