1.DeFronzo, R. A., et al., Type 2 diabetes mellitus. Nat Rev Dis Primers, 2015. 1: p. 15019.
2.Zheng, Y., S. H. Ley, and F. B. Hu, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018. 14(2): p. 88–98.
3.Foos, V., et al., Assessing the Burden of Type 2 Diabetes in China Considering the Current Status-Quo Management and Implications of Improved Management Using a Modeling Approach. Value Health Reg Issues, 2019. 18: p. 36–46.
4.Ma, R. C. W., X. Lin, and W. Jia, Causes of type 2 diabetes in China. The Lancet Diabetes & Endocrinology, 2014. 2(12): p. 980–991.
5.Arora, T. and F. Backhed, The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med, 2016. 280(4): p. 339–49.
6.Sharma, S. and P. Tripathi, Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem, 2019. 63: p. 101–108.
7.Barlow, G. M., A. Yu, and R. Mathur, Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutr Clin Pract, 2015. 30(6): p. 787–97.
8.Dao, M. C. and K. J. E. J.o.I. M. Clement, Gut microbiota and obesity: Concepts relevant to clinical care. 2017. 48: p. 18–24.
9.Thaiss, C. A. J. S., Microbiome dynamics in obesity. 2018. 362(6417): p. 903–904.
10.Cani, P. D. J. G., Severe obesity and gut microbiota: does bariatric surgery really reset the system? 2019. 68(1): p. 5–6.
11.Turnbaugh, P. J., et al., A core gut microbiome in obese and lean twins. Nature, 2009. 457(7228): p. 480–4.
12.Turnbaugh, P. J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444(7122): p. 1027–31.
13.Brown, J. M. and S. L. Hazen, Microbial modulation of cardiovascular disease. Nature Reviews Microbiology, 2018. 16: p. 171.
14.Cosola, C., et al., Microbiota metabolites: Pivotal players of cardiovascular damage in chronic kidney disease. 2018. 130: p. 132–142.
15.Joris, B. R. and G. B. J. C. O.i.L. Gloor, Unaccounted risk of cardiovascular disease: the role of the microbiome in lipid metabolism. 2019. 30(2): p. 125–133.
16.Pascale, A., et al., Microbiota and metabolic diseases. Endocrine, 2018. 61(3): p. 357–371.
17.Lu, L., et al., Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese individuals. 2009. 32(7): p. 1278–1283.
18.Lim, S., et al., Association of vitamin D deficiency with incidence of type 2 diabetes in high-risk Asian subjects. 2013. 97(3): p. 524–530.
19.Martini, L. A., A. S. Catania, and S. R. J. N. R. Ferreira, Role of vitamins and minerals in prevention and management of type 2 diabetes mellitus. 2010. 68(6): p. 341–354.
20.Lin, H. V., et al., Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One, 2012. 7(4): p. e35240.
21.Gao, Z., et al., Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 2009. 58(7): p. 1509–17.
22.Perry, R. J., et al., Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature, 2016. 534(7606): p. 213–7.
23.Cani, P. D., et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. 2008. 57(6): p. 1470–1481.
24.Gubern, C., et al., Natural antibiotics and insulin sensitivity: the role of bactericidal/permeability-increasing protein. 2006. 55(1): p. 216–224.
25.Alattas, O. S., et al., Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies. 2009. 8(1): p. 20–20.
26.Zhou, S. Y., et al., FODMAP diet modulates visceral nociception by lipopolysaccharide-mediated intestinal inflammation and barrier dysfunction. 2018. 128(1): p. 267–280.
27.Carding, S. R., et al., Review article: The human intestinal virome in health and disease. 2017. 46(9): p. 800–815.
28.Hsu, B. B., et al., Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. Cell Host & Microbe, 2019. 25(6): p. 803–814.e5.
29.Zuo, T., et al., Gut mucosal virome alterations in ulcerative colitis. Gut, 2019. 68(7): p. 1169–1179.
30.Gomes, J. M. G., J.d.A. Costa, and R.d.C. G. Alfenas, Metabolic endotoxemia and diabetes mellitus: A systematic review. Metabolism, 2017. 68: p. 133–144.
31.Liu, X., et al., Lipopolysaccharide binding protein, obesity status and incidence of metabolic syndrome: a prospective study among middle-aged and older Chinese. Diabetologia, 2014. 57(9): p. 1834–41.
32.Reyes, A., et al., Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 2010. 466(7304): p. 334–8.
33.Norman, J. M., et al., Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell, 2015. 160(3): p. 447–60.
34.Shkoporov, A. N., et al., Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome, 2018. 6(1): p. 68.
35.Rascovan, N., R. Duraisamy, and C. Desnues, Metagenomics and the Human Virome in Asymptomatic Individuals. Annu Rev Microbiol, 2016. 70: p. 125–41.
36.Ma, Y., et al., A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome, 2018. 6(1): p. 24.
37.Ott, S. J., et al., Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection. Gastroenterology, 2017. 152(4): p. 799–811 e7.
38.Poranen, M. M., S. Mantynen, and C. Ictv Report, ICTV Virus Taxonomy Profile: Cystoviridae. J Gen Virol, 2017. 98(10): p. 2423–2424.
39.Mehta, N. N., et al., Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes, 2010. 59(1): p. 172–81.
40.Navarro, A., et al., Common epitopes in LPS of different Enterobacteriaceae are associated with an immune response against Escherichia coli O157 in bovine serum samples. J Med Microbiol, 2007. 56(Pt 11): p. 1447–54.
41.Qin, J., et al., A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012. 490(7418): p. 55–60.
42.Jia, L., et al., Anti-diabetic Effects of Clostridium butyricum CGMCC0313.1 through Promoting the Growth of Gut Butyrate-producing Bacteria in Type 2 Diabetic Mice. Sci Rep, 2017. 7(1): p. 7046.
43.Li, H., et al., Relationship between gut microbiota and type 2 diabetic erectile dysfunction in Sprague-Dawley rats. J Huazhong Univ Sci Technolog Med Sci, 2017. 37(4): p. 523–530.
44.Rath, S., et al., Pathogenic functions of host microbiota. Microbiome, 2018. 6(1): p. 174.
45.Lopetuso, L. R., et al., Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog, 2013. 5(1): p. 23.
46.Yu, J., et al., Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut, 2017. 66(1): p. 70–78.
47.Koskella, B. and M. A. Brockhurst, Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev, 2014. 38(5): p. 916–31.
48.Executive summary: Standards of medical care in diabetes—2010. Diabetes Care, 2010. 33 Suppl 1: p. S4–10.
49.Thurber, R. V., et al., Laboratory procedures to generate viral metagenomes. Nat Protoc, 2009. 4(4): p. 470–83.
50.Minot, S., et al., The human gut virome: inter-individual variation and dynamic response to diet. Genome Res, 2011. 21(10): p. 1616–25.
51.Bolger, A.M., M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30(15): p. 2114–20.
52.Langmead, B. and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012. 9(4): p. 357–9.
53.Benjamini, Y. and Hochberg, Y., Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. 1995. 57(1): p. 289–300.