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Abstract In this work, the analysis of the dynamic

general model of an unmanned underwater vehicle (UUV)

based on dual quaternions is presented, then the gen-

eral dynamic model is reduced to a specific vehicle of

4 DoF , this model eliminates the singularities that ex-

ist with the representation of the Euler angle and that

the model is more compact than others proposed in

the literature [1],[2]. To demonstrate the applicability

of the model, three controller strategies are proposed for

tracking a trajectory, the first controller is a PD + G,

under unknown disturbances it produces a considerable

tracking error, the second is an adaptive controller that

estimates unknown hydrodynamic parameters , and the

third is a robust controller for unknown disturbances

and parameter uncertainties. The closed-loop system

stability analysis for each controller is based on Lya-

punov’s theory, a set of numerical simulations is per-

formedto show the behavior of the vehicle with the

proposed controllers. The efficiency of the controllers

is shown in Table 2 where it is deduced that the adap-

tive controller has a better performance. The graphics

show that the robust controller has little error tracking

and the computational cost is lower.
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1 Introduction

1.1 Background

Nowadays, the UUV’s have had a great impact on in-

dustry and research [3], due to their applications such

as 3D reconstruction [4,5], marine fauna recognition [6–

8], marine inspection [9,10] and acquisition of physical

variables such as temperature, Ph and dissolved oxygen

[11]. The autonomous underwater vehicles (AUV’s) per-

form tasks without human intervention and controlling

the position of the vehicle autonomously is very impor-

tant, but it has several difficulties since it must com-

pensate the uncertainties that exist in the model, dis-

turbances caused by sea waves and currents and other

factors [12].

This article addresses the problems related to ob-

taining the mathematical model and the implementa-

tion of control laws capable of stabilizing their position

and orientation. Several works there are different ap-

proaches to obtain the mathematical representation of

this type of vehicle, among which are those proposed

in [1] based on newton’s laws and part of the general

robotics equation, Bailey [13], a 6 DoF mathematical

model was developed for surface vehicles that operate

in waves. In which the inertia and damping parame-

ters are considered, in addition to showing some simu-

lations of standard maneuvers (straight line, the turn

maneuver, the zigzag maneuver), Leonard [14] He de-

scribes the mathematical modeling for a glider-type un-

derwater vehicle, which generates its movements from
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the mass distribution and changes in buoyancy. in addi-

tion to proposing a robust controller for state feedback,

and Graver [15], in this work they talk about the math-

ematical model for underwater vehicle type glider, in

which several mass are considered which together gen-

erate the movements of the vehicle, in addition to mak-

ing use of physical properties such as volume change

and buoyancy. This modeling is different from that of

conventional underwater vehicles, although it also uses

Euler’s angles.

The article [2] proposes a vector mathematical model

that allows taking advantage of the matrix properties of

symmetry, anti-symmetry and positive, among others.

This analysis can be coupled to any underwater vehi-

cle and is based on the theory of manipulator robots.

Using these equations, the design of controllers can be

facilitated and the stability analysis of the system can

be obtained. One way to model the behavior of vehicle

movement is by using Euler’s angles [1,15],this models

analyze different hydrodynamic parameters, including

works where the unknown parameters of mass / iner-

tia and damping are estimated, in order to be able to

compensate them [16,17], but a problem that this type

of model is the singularity that exists in Euler’s an-

gles, because of this, a model was developed based on

quaternions to eliminate singularities exist in the Euler

angles using matrices 6× 6 [18], another way to model

dynamics and kinematics in a more compact way that

includes translation and rotation is to use dual quater-

nions. [19,20,2,21,18], this type of model can represent

the behavior of the vehicle in a more compact and sim-

ple way, consequently, the computer process is less, in

addition to eliminating the singularities of the Euler

angles.

To manipulate underwater vehicles one of the most

used controller is PD + G [22], this type of controllers

needs to know the forces of the buoyancy, which in

many situations is very complicated because it does

not know, also in in the demonstrating stability it is

only for regulation, not for trajectory tracking, to solve

the problems, adaptive controls have been developed

for robots and vehicles [23] - [24] to estimate dynamic

parameters and thus be able to demonstrate stability

for trajectory tracking, another disadvantage that this

type of controllers have is that it depends on the model

and for underwater vehicles there are forces that can’t

be modeled. Analyzing these factors we focus on the

robust controls [25] - [26] to compensate for unmodeled

variables and without requiring as much computational

processing as compared to adaptive controllers, in ad-

dition to they not depending as much on the model and

the stability demonstration is performed for trajectory

tracking.

The main contribution of this research is a dynamic

representation of an underwater vehicle using dual quater-

nions based on all the forces studied in [1] and the dy-

namics of a rigid body considering some properties and

physical limitations of the vehicle. Also, the develop-

ment three controllers are presented in this work. A con-

troller PD + G, an adaptive control and robust control.

The proposed approaches are simulate with a same tra-

jectory, considering unmodeled dynamics and external

disturbances. In addition, a set of simulations demon-

strate the performance of the proposed methods. From

the comparison performed with proposed controllers,

we can deduce that the robust controller has advan-

tages, such as: a low computational cost since it does

not depend of estimation of the dynamic parameters,

presenting a fast convergence to trajectory. Moreover,

the efficiency of the controllers is validated by numeri-

cal experiments and obtain Root Mean Square Error.

The remainder of the document is organized as fol-

lows. Section 2 the mathematical preliminaries are pre-

sented. Section 3 presents the main contribution of this

paper, which is the develop of dynamic model of AUV

based on dual quaternions. Next, Section 4 describes

the development of three controllers using dual quater-

nions. Then, Section 5 demonstrates the controllers per-

formances through a series of numerical simulations for

3D trajectory tracking. Finally, provides concluding re-

marks and future works.

2 Mathematical preliminaries

The notation to represent the sets used in this work are

as follows

– R represents the set of real numbers.

– H represents the set of quaternions.

– DQ is the set of dual quaternions.

2.1 Quaternion Algebra

A quaternion q ∈ H is defined as

q : = q0 + q1 ı̂+ q2̂+ q3k̂ =

[
q0−→q

]
, (1)

where q0, q1, q2, and q3 are real coefficients, vector −→q
is defined as −→q = q0 + q1 ı̂ + q2̂ + q3k̂, and ı̂, ̂ and k̂

stand for standard imaginary units in H, which satisfy

ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1, we defined the product of
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quaternions with the symbol ⊗. The product of quater-

nions is obtained [27] with the following equation

q⊗ p =

[
q0p0 −−→p · −→q

q0
−→p + p0

−→q +−→q ×−→p

]
, (2)

where −→q × −→p is the product cross between vectors.

From the equation (2) the following relationship can be

obtained

−→q ×−→p =
1

2
[q⊗ p− p⊗ q], (3)

the norm of a quaternion is defined as:

‖q‖ = q20 + q21 + q22 + q23 , (4)

we have that the inverse and the conjugate of a quater-

nion with the following equation

q−1 =
q∗

‖ q ‖2

q∗ =

[
q0
−−→q

]
.

(5)

In the case of a rotation, it must be considered that

the quaternion is normalized, that is ‖ q ‖= 1. The

representation of the angle of the axis, in which the

quaternion is represented as an axis on which the ve-

hicle rotates, and the angle of rotation is given by the

following equation

−→
Θ

2
= ln(q) =

{ −→q
‖−→q ‖ arccos q0 if ‖−→q ‖ > 0

0 if ‖−→q ‖ = 0
, (6)

where
−→
Θ is the vector which contains the axis-angle

representation. Now for the calculation of the derivative

we have to:

q̇ =
1

2
q⊗−→ω , (7)

where
−̇→
Θ = −→ω =

[
p q r

]T
is the angular velocity in the

body frame. For more details see [28,29].

2.2 Dual quaternions

In section 2.1, it can be seen that quaternions are used

only when objects rotate, not for translational motion,

due to this observation we use dual quaternions, [30]

which is defined as:

q̂ = q + ε
1

2
q⊗
−→
l b, (8)

where
−→
l b is the translation of the vehicle with respect

of its body reference, ε is a dual number, which satisfies

that ε 6= 0 and ε2 = 0. It is obtained that the conju-

gate of the dual quaternion of the equation (8) and its

logarithm by the following equations:

q̂∗ =q∗ − ε1

2

−→
l b ⊗ q∗ (9a)

ln(q̂) =
1

2
[
−→
Θ + ε

−→
l b] =

1

2
[
−→
Θ + εq∗ ⊗

−→
P I ⊗ q], (9b)

where
−→
P I is the position of the body seen in the inertial

system. Deriving (8) we have to

˙̂q =
1

2
q̂ ⊗ ξ̂, (10)

where ξ̂ = −→ω + ε(−→ω ×
−→
l b +

−̇→
l b) is the twist (the com-

bination of translation and angular velocity) and the

derivative ξ̂ is:

˙̂q∗ = −1

2
ξ̂ ⊗ q̂∗

2
d

dt
(q⊗ ln q̂ ⊗ q∗) = q⊗ ξ̂ ⊗ q∗.

(11)

Note the translation with respect of its inertial ref-

erence and its derivative can be rewritten as follows

−→
P I =q⊗

−→
l b ⊗ q∗ =

[
x y z

]T
(12a)

−̇→
P I =q⊗ [−→ω ×

−→
l b +

−̇→
l b]⊗ q∗. (12b)

From [1] we have that the relationship between the

speed seen in the body, −→ν =
[
u v w

]T
, and the speed

seen in the inertial system is −→ν = q∗ ⊗
−̇→
P I ⊗ q. From

the equation (10) we have to:

˙̂q =
1

2
q̂ ⊗ ξ̂

˙̂
ξ = −̇→ω + ε−̇→ν ,

(13)

where −→ν = −→ω ×
−→
l b +

−̇→
l b.

Let Â = A1 + εA2, B̂ = B1 + εB2, Ĉ = C1 + εC2,

D̂ = D1 + εD2 and Ê = E1 + εE2, where C1 ∈ Rn1×m1 ,

C2 ∈ Rn2×m2 , D1, E2 ∈ Rm1×l1 , D2, E1 ∈ Rm2×l2 and

Xi = x0i +x1i ı̂+x2i ̂+x3i k̂ = x0i +−→x 1i for all i = 1, 2

and Xi = Ai,Bi ∈ H. Naming the following products:

Â•B̂ = A1 •B1 + A2 •B2 (14a)

Ĉ ◦ D̂ = C1D1 + εC2D2 (14b)

Ĉ_Ê = C1E2 + εC2E1 (14c)

Ĉ � D̂ = C1D1 + C2D2, (14d)

where A1•B1 = a01b01 + a11b11 + a21b21 + a31b31 =

a01b01 +−→a 1 •
−→
b 1 = a01b01 +−→a T1

−→
b 1. Defining the norm

of a dual quaternion as

‖Â‖ =
√
‖A1‖2 + ‖A2‖2. (15)
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Fig. 1 The BlueROV2 vehicle, coordinate systems: body-
fixed-frame B and earth-fixed-frame I.

3 Vehicle modeling using dual quaternions

For the realization of a model of a submarine vehi-

cle with dual quaternions, we started by analyzing the

forces analyzed [2] , which is represented as follows

Mν̇ + C(ν)ν +D(ν)ν + g(q) = τ + δ

η̇ = J(q)ν,
(16)

where δ = [
−→
δ v,
−→
δ w]T is the uncertainties, M is the

mass and inertia matrix, C(ν) is the Coriolis matrix,

g(q) describes the gravitational and buoyancy forces, D

is the Damping matrix, τ = [−→τ Tν ,−→τ Tω ]T is the vector of

the control forces and moments with −→τ Tν = [X,Y, Z]T

and −→τ Tω = [K,M,N ]T , η =
[
x y z φ θ ψ

]T
and ν =[−→ν T −→ω T

]T
, the description of the matrices are in [2],

[1], [31]. The matrices M and C is formed from two

matrices,

M = MRB +MA (17a)

C = CRB + CA, (17b)

where MA, CA are the hydrodynamic added inertial

matrices, and MRB , CRB are the rigid-body matrices.

3.1 Model of the vehicle with dual quaternions

In this section, we complete the model of equation (13)

by analyzing the forces of equation (16). For which the

following dual quaternions will be searched

– Dual Quaternion Coriolis.

– Dual Damping Quaternion.

– Dual Quaternion of gravitational forces.

– Dual Quaternion control inputs.

For the construction of these dual quaternions, we

first define the following matrices, obtained from the

inverse of MRB of equation (16):

MωRB2
=[I0 +mS(−→r g)S(−→r g)]−1

MνRB1
=[Im+m2S(−→r g)I−10 S(−→r g)]−1

MνRB2
=S(−→r g)MωRB2

MωRB1
=−mI−10 S(−→r g)MνRB1

,

(18)

where I ∈ R3×3 is the identity matrix, m is the mass

of the vehicle, I0 ∈ R3×3 is the Inertial matrix of the

vehicle and −→r g is the position of the center of gravity

and S(
−→
X ) is the matrix of the cross product which is

defined as:

S(
−→
X ) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (19)

where
−→
X = [x1, x2, x3]T . We defined the following ma-

trices, obtained from matrix MA

MA11 =−

Xu̇ Xv̇ Xẇ

Yu̇ Yv̇ Yẇ
Zu̇ Zv̇ Zẇ

 ,MA22 = −

Kṗ Kq̇ Kṙ

Mṗ Mq̇ Mṙ

Nṗ Nq̇ Nṙ


MA12 =−

Xṗ Xq̇ Xṙ

Yṗ Yq̇ Yṙ
Zṗ Zq̇ Zṙ

 ,MA21 = −

Ku̇ Mu̇ Nu̇
Kv̇ Mv̇ Nv̇
Kẇ Mẇ Nẇ


(20)

where MA12 = MA
T
21. Calculating the inverse of the

matrix M , we have the following matrices

Mν1 =[MA11 +mI − [MA12 −mS(−→r g)][MA22

+ I0]−1[MA21 +mS(−→r g)]]−1

Mω2
=[−[MA21 +mS(−→r g)][MA11 +mI]−1[MA12

−mS(−→r g)] +MA22 + I0]−1

Mω1
=− [MA22 + I0]−1[MA21 +mS(−→r g)]Mν1

Mν2 =− [MA11 +mI]−1[MA12 −mS(−→r g)]Mω2

(21)

separating the hydrodynamic parts of the inverse of ma-

trix M i.e. M−1−M−1RB , we have the following matrices:

MνA1
=MνA3

Mν1 +MνA4
Mω1

MνA2
=MνA3

Mν2 +MνA4
Mω2

MωA1
=MωA3

Mν1 +MωA4
Mω1

MωA2
=MωA3

Mν2 +MωA4
Mω2

,

(22)

where MνA3
= MνRB1

MA11 + MνRB2
MA21, MνA4

=

MνRB1
MA12 + MνRB2

MA22, MωA3
= MωRB1

MA11
+

MωRB2
MA21 and MωA4

= MωRB1
MA12 + MωRB2

MA22
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With these terms the first dual quaternions that we

defined are the following

M̂1 =Mω2
+ εMν1 , M̂2 = Mω1

+ εMν2 ,

M̂A1
=MωA2

+ εMνA1
, M̂A2

= MωA1
+ εMνA2

M̂RB1
=MωRB2

+ εMνRB1
, M̂RB2

= MωRB1
+ εMνRB2

.

(23)

To divide the elements of the rigid body from hy-

drodynamics, we name the dual-body rigid quaternion

as:

ĈRB =
[
Iε I

]
M−1RBCRBν

=M̂RB1
◦ ĈmRB + M̂RB2

_ĈmRB ,
(24)

where ĈmRB = ĈRB1
◦ ξ̂ + ĈRB2

_ξ̂ with ĈRB1
=

−S(I0
−→ω )+mS(S(−→ν )−→r g) and ĈRB2

= −(1+ε)(mS(−→ν )+

mS(S(−→ω )−→r g)). With the same idea that ĈRB was ob-

tained, we named the double quaternion of added mass

as

ĈA =
[
εI I

]
M−1Cν − ĈRB = M̂A1

◦ ĈmRB
+ M̂A2

_ĈmRB + M̂1 ◦ ĈmA + M̂2_ĈmA ,
(25)

where ĈmA = ĈA1
◦ξ̂+ĈA2

_ξ̂ with ĈA1
= −S(MA21

−→ν +

MA22

−→ω ) and ĈA2
= −(1 + ε)S(MA11

−→ν +MA12

−→ω ). Fi-

nally, the Coriolis dual quaternium is

Ĉ(ξ̂) = ĈRB + ĈA =M̂1 ◦ Ĉm(ξ̂) + M̂2_Ĉm(ξ̂),

(26)

where Ĉm = Ĉ1 ◦ ξ̂+ Ĉ2_ξ̂ with Ĉ1 = ĈA1
+ ĈRB1

and

Ĉ2 = ĈA2 + ĈRB2 . We defined the following matrices,
obtained from matrix D

D11 =

d11 d12 d13d21 d22 d23
d31 d32 d33

 , D22 =

d44 d45 d46d54 d55 d56
d64 d65 d66


D12 =

d14 d15 d16d24 d25 d26
d34 d35 d36

 , D21 =

d41 d42 d43d51 d52 d53
d61 d62 d63

 (27)

On the other hand, the dual quaternion of Damping is

defined as

D̂(ξ̂) =
[
Iε I

]
M−1Dν =M̂1 ◦ D̂m(ξ̂) + M̂2_D̂m(ξ̂),

(28)

where D̂m = D̂1 ◦ ξ̂+ D̂2_ξ̂ with D̂1 = D22 + εD11 and

D̂2 = D21 + εD12. For this part we have to consider the

gravity and buoyancy forces,
−→
f g and

−→
f B , which are

given by the following equation:

−→
f g = q∗ ⊗

−→
W ⊗ q;

−→
f B = q∗ ⊗

−→
B ⊗ q, (29)

where
−→
W = [0, 0,mg]T and B is the buoyancy force of

the vehicle. We have that the vector of gravitational

forces is:

g =
[−→
f B −

−→
f g
−→r B ×

−→
f B −−→r g ×

−→
f g

]T
, (30)

with −→r B as the distance from the origin of the fixed

frame to the body to the buoyancy center of the vehicle.

We named the dual quaternium of gravitational forces

as

ĝ(q̂) =
[
Iε I

]
M−1g =M̂1 ◦ ĝm(q̂) + M̂2_ĝm(q̂),

(31)

where ĝm = −→r B ×
−→
f B − −→r g ×

−→
f g + ε[

−→
f B −

−→
f g].

Defining the dual quaternion of gravity forces:

τ̂ =
[
Iε I

]
M−1g(q) =M̂1 ◦ τ̂in + M̂2_τ̂in, (32)

where τ̂in = −→τ ω + ε−→τ ν . From the equations (32), (31),

(28), (26) and (18) we can rewrite equation (13) as:

˙̂q =
1

2
q̂ ⊗ ξ̂

˙̂
ξ =τ̂ − Ĉ(ξ̂)− D̂(ξ̂)− ĝ(q̂) + δ̂,

(33)

where δ̂ = M̂1 ◦ δ̂m + M̂2_δ̂m with δ̂m = δω + εδv.

Just as the matrices of the model of this article [2]

have certain properties, the dual quaternions also have

certain properties that must be met, so we have to con-

sider two dual quaternions of added mass, M̂ and M̂m,

which are given by the following equations.

M̂(ξ̂) =[M̂T
3 ◦ ξ̂ + M̂T

4 _ξ̂]T (34a)

M̂m(ξ̂) =M̂3 ◦ ξ̂ + M̂4_ξ̂, (34b)

where M̂3 = A22 + I0 + ε[A11 + mI3×3] and M̂4 =

A12−mS(−→r g)+ε[A21 +mS(−→r g)]. In [22] we have that

the matrices M and D are positive and C is a skew-

symmetric matrix, due to this it can be obtained that

the dual quaternions must meet the following properties

for ξ̂ 6= 0

d

dt
[M̂(ξ̂)� ξ̂] = 2M̂(ξ̂)� ˙̂

ξ = 2ξ̂ • M̂m(
˙̂
ξ) (35a)

M̂(ξ̂)� Ĉ(ξ̂) = ξ̂ • Ĉm(ξ̂) = 0 (35b)

M̂(ξ̂)� D̂(ξ̂) = ξ̂ • D̂m(ξ̂) > 0 (35c)

M̂(ξ̂)� τ̂ = ξ̂ • τ̂in (35d)

ξ̂ • D̂ > 0, (35e)

note that in the case ξ̂ 6= 0 we have M̂�D̂ = ξ̂ •D̂ = 0.
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3.2 Model of the BlueROV2 with dual quaternions

In this work the BlueROV2 underwater vehicle was

used, the vehicle was developed by the company Blue

Robotics. The remotely operated vehicle (ROV) has 6

thrusters, the configuration is shown in the Figure 2.

By the shape of the vehicle, the following considera-

tions are taken

– We assume that origin placed in the body coincides

with the center of gravity i.e. rg =
−→
0 .

– By the symmetry of our vehicle, it’s assumed that

I0 is a diagonal matrix, in addition to going at low

speeds, which is why A11 and A22 are diagonal ma-

trices and A12=A21 = 0.

– The vehicle is stable in roll and pitch, that is to say

q = q0 + q3k̂ and −→ω = [0, 0, r]T = rk̂.

Fig. 2 The resulting relationship between the distribution
of the thrusters and the forces generated by the propellers is
presented, due to the direction of rotation in the thrusters
the generated moments can be canceled.

Note that for these conditions all products with the

symbol _ are zero, considering the conditions of the

model we have the equations (18) and (21) we obtain

that MνRB1
= I3×3(1/m), Mν1 = [A11 + mI]−1,

MωRB2
= I−10 , MνA1

= (1/m)A11[A11 +mI]−1, Mω2
=

[A22+I0]−1, MωA2
= I−10 A22[A22+I0]−1 and MνRB2

=

MωRB1
= Mν2 = Mω1

= MνA2
= MωA1

= 03×3. In the

Figure 2, shows the diagram of forces generated by the

thrusters. Calculating the body-fixed torques generated

by the forces, are defined as

−→τ ν =


∑2
i=1

∑1
j=0(−1)jFi+2∗j cos(θi+2∗j)∑2

i=1

∑1
j=0(−1)i+1+jFi+2∗j cos(θi+2∗j)

F5 + F6


−→τ ω =

 ly[F5 − F6]

0∑4
i=1(−1)i+1Fi[ly cos(θi) + lx sin(θi)]

 ,
(36)

where
−→
l i = (lx, ly, 0) is the position vector of the force

−→
F i ∀i = 1, ..., 6, with respect to the body-fixed refer-

ence frame. Assuming that lx ≈ ly, θ1 ≈ θ2 ≈ θ3 ≈ θ4
and F5 ≈ F6, we have from the equation (36) that:

−→τ ν =

[F1 + F2 − F3 − F4] cos(θ1)

[F1 − F2 − F3 + F4] sin(θ1)

2F5


−→τ ω =

 0

0

[ly cos(θ1) + lx sin(θ1)][F1 − F2 + F3 − F4]


(37)

from the equation (32) we have to:

τ̂ =
N

Izz −Nṙ
k̂ + ε

[
X

m−Xu̇
Y

m−Yv̇
Z

m−Zẇ

]T
, (38)

where Izz is the moment of inertia in the z-axis. For the

conditions of the BlueROV2 model, the equation (24)

is rewritten as

ĈRB = ε−→ω ×−→ν , (39)

from the equation (25) we have

ĈA =
(Xu̇ − Yν̇)uv

Izz −Nṙ
k̂ − ε{[A11 +mI3×3]−1S(A11

−→ν )−→ω

+A11[A11 +mI3×3]−1[−→ω ×−→ν ]},
(40)

for obtain the dual coriolis quaternion, we can perform

the sum of the equations (39) and (40) or by the equa-

tion (26)

Ĉ =ε[A11 +mI3×3]−1[m−→ω ×−→ν − S(A11
−→ν )−→ω ]

+
(Xu̇ − Yν̇)uv

Izz −Nṙ
k̂.

(41)

For the calculation of this quaternion we suppose

that D12 = D22 = 03×3 besides that D11 and D22 are

diagonal matrices, for which we have the equation (28)

that:

D̂ =
rd66

Izz −Nṙ
k̂ + ε[A11 +mI3×3]−1D11

−→ν , (42)

due to the initial conditions we only have rotation in ψ

so we have that q = cos(ψ/2) + k̂ sin(ψ/2), this way we

have the equation (29) that

−→
f g =

−→
W ;
−→
f B =

−→
B, (43)

by the equations (21) and (31) we have to:

ĝ = ε[A11 +mI]−1[
−→
B −

−→
W ], (44)
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4 Control

In this section, we work three controls using dual quater-

nions of the equation (33), they are:

– PD Control with Desired Gravity Compensation.

– Adaptive Controller.

– Robust Control.

For the control stage we have to define the dual

error quaternion for a desired dual quaternion q̂d =

qd + 1
2εqd ⊗

−→
l d, which is defined [32] as follows

q̂e =q̂∗d ⊗ q̂ = qe +
1

2
εqe ⊗

−→
l e, (45)

where qe = q∗d ⊗ q and
−→
l e =

−→
l b − q∗e ⊗

−→
l d ⊗ qe,

another way of expressing it is with the positions seen

in the inertial system, this expression is
−→
l e = q∗ ⊗

[
−→
P I −

−→
P dI ]⊗ q = q∗ ⊗−→e −→

P I
⊗ q, in this way the dual

error quaternion in the system placed in the body is

expressed in terms of positions obtained in the inertial

system. From equations (45) and (9b), we define the

error as follows

êq̂e =2qe ⊗ ln(q̂e)⊗ q∗e = qe ⊗ {
−→
Θe + ε

−→
l e} ⊗ q∗e,

(46)

where
−→
Θe = 2 ln (q∗d ⊗ q). Deriving the equation (46) in

the inertial system, we have to:

˙̂qe =
1

2
q̂e ⊗ [ξ̂ + 2q̂∗e ⊗ ˙̂q∗d ⊗ q̂] =

1

2
q̂e ⊗ ξ̂e, (47)

where ξ̂e = −→ω e+ ε−→ν e with −→ω e = −→ω +2q∗e⊗ q̇∗d⊗q and
−→ν e =

−̇→
l e +−→ω e×

−→
l e. In the case of wanting to use the

model in dual quaternions seen in the body and with

measurements in the inertial system, the following con-

vergence can be obtained from equations (12a), (12b)

and (47):

−→ω e =−→ω + 2q∗e ⊗ q̇∗d ⊗ q

−→ν e =q∗ ⊗ [−̇→e −→
P I
−−→e −→

P I
× [qd ⊗ q̇∗d]]⊗ q,

(48)

deriving the equation (46) we have to

êξ̂e = ˙̂eq̂e = qe ⊗ ξ̂e ⊗ q∗e = qe ⊗ {ξ̂ − ξ̂de} ⊗ q∗e (49)

where ξ̂de = q∗ ⊗ q̇d ⊗ qe + εq∗ ⊗ [
−̇→
P dI +−→e −→

P I
× [qd ⊗

q̇∗d]]⊗ q.

4.1 PD Control with Desired Gravity Compensation

We have that the hydrodynamic parameters are diffi-

cult to model, for this reason a PD control is proposed

since it does not need the hydrodynamic parameters

and also its ease of implementation. For perform a PD

control with desired gravity compensation for regula-

tion i.e
˙̂
ξd = 0 and êξ̂e = ξ̂, and for the stability anal-

ysis of the control of the equation (50), the following

theorem is proposed

Theorem 1: Consider the dynamic system given by

(33) with δ̂ = 0, PD Control with Desired Gravity Com-

pensation control strategy for regulation is designed a

τ̂in = τ̂pd+ĝm = τ̂PD + ĝm, (50)

where τ̂PD is a PD control with dual quaternions seen

in the body, this is definited as:

τ̂PD = −K̂p ◦ êq̂e − K̂d ◦ êξ̂e , (51)

where K̂p = kpω +εkpν and K̂d = kdω +εKdν where kpω ,

kpν , kdω , kdν ∈ R3×3 and the matrices are positive, then

it is satisfied that the error converges to zero globally

asymptotically stable .

Proof:

Substituting (51) in (33) and (32), we have:

˙̂q =
1

2
q̂ ⊗ ξ̂

˙̂
ξ =M̂1 ◦ τ̂PD + M̂2_τ̂PD − Ĉ − D̂.

(52)

For the stability analysis of the control of the equa-

tion (50) for regulation, the following function of Lya-

punov is proposed

V =
1

2
M̂ � [q∗e ⊗ êξ̂e ⊗ qe] +

1

2
êq̂e • (K̂p ◦ êq̂e)

=
1

2
M̂ � ξ̂ +

1

2
êq̂e • (K̂p ◦ êq̂e),

(53)

deriving the equation we have

V̇ =M̂ � ˙̂
ξ + ˙̂eq̂e • (K̂p ◦ êq̂e) = ξ̂ • (K̂p ◦ êq̂e)+

M̂ � [M̂1 ◦ τ̂PD + M̂2_τ̂PD − Ĉ − D̂],
(54)

then using the properties of the equation (35) in the

equation (54) we have to:

V̇ =ξ̂ • τ̂PD − M̂ � D̂ + ξ̂ • (K̂P ◦ êq̂e)

=− ξ̂ • (K̂d ◦ êξ̂e)− M̂ � D̂.
(55)

We have that V̇ = 0 if ξ̂ = 0. For prove that the

system is globally asymptotically stable we use Salle’s

theorem, therefore:
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Ω =[(êξ̂e , êq̂e) ∈ D : V̇ = 0] = [êq̂e ∈ D, eξ̂e = 0̂ ∈ D],

(56)

from (56) and (52) we can see that: (êq̂e , êξ̂e) = (0̂, 0̂) is

the only condition in Ω for all 0 ≤ t. This means that

the equilibrium point is globally asymptotically stable

according to LaSalle’s theorem. �

4.2 Adaptive Controller

The control PD+ĝm is good for regulation, but for track

tracking it is not adequate because we need to know

the hydrodynamic parameters. In this section we used

an adaptive control to estimate all model parameters

that are not mass, buoyancy forces or moment of iner-

tia, based on an adaptive control used for manipulative

robots [33], for this we assume that the hydrodynamic

parameters do not vary both with respect to time, be-

cause the vehicle goes at low speeds ( i.e. the parameters

are almost constant). With this clarified, the following

theorem is proposed

Theorem 2: Consider the dynamic system given

by (33) with δ̂ = 0, for the estimation of the parame-

ters of Ĉx and D̂x where x = 1, 2 which are given by

equations (57) and (28) and adaptive control strategy

is designed a

τ̂in =τ̂pd+ĝm + M̂m(
˙̂
β) + D̂m(β̂) + Ĉm(β̂), (57)

where β̂ =
˙̂
ξde − q∗e ⊗ [Λ̂ ◦ êq̂e ] ⊗ qe = [βp, βq, βr]

T +

ε[βu, βv, βw]T , Λ̂ = k−1dω kpω + εk−1dν kpν and the estimate

of a dual matrix or quaternion x̂ is named as x̂. Then

the system path error will converge to zero

Proof:

First proceed to parameterize the elements (see [34])

of the following way:

Ŷ (ξ̂, β̂)ζ =M̂m(
˙̂
β) + Ĉm(β̂) + D̂m(β̂), (58)

where ζ ∈ Rn×1 is the vector of the unknown n -

parameters and Ŷ (ξ̂, β̂) = Y1 + εY2 is dual matrix re-

gressor with Y1, Y2 ∈ R3×n. For the estimation of the

parameters of ζ, the law of updating [34] is chosen to

be

ζ̇ = −Γ−1(Ŷ T (ξ̂, β̂)� σ̂), (59)

where σ̂ = ξ̂ − β̂ and Γ ∈ Rn×n is a positive definite

matrix. Rewriting equation (58) in terms of σ̂ with the

equations (33), (57), (35) and (59), we have to

M̂m( ˙̂σ) + Ĉm(σ̂) + D̂m(σ̂) = τ̂PD − Ŷ (ξ̂, β̂)ζ̃, (60)

where ζ̃ = ζ− ζ is the estimation error. For the demon-

stration of stability, the estimation error is considered,

ζ̃ , the following function of Lyapunov is proposed

V =
1

2
M̂(σ̂)� σ̂ +

1

2
ζ̃TΓ ζ̃, (61)

Using the properties of (35) and the equations (60)

and (59) we have that the derivative of (61) is

V̇ =− σ̂ • D̂m(σ̂)− σ̂ • Ŷ (ξ̂, β̂)ζ̃ + ζ̃T (Ŷ T (ξ̂, β̂)� σ̂)

+ σ̂ • τ̂PD = −σ̂ • D̂m(σ̂)− σ̂ • (K̂d ◦ [q∗e ⊗ σ̂ ⊗ qe]).

(62)

by the properties of the dual matrices of the model

described by equation (35) we have that σ̂ • D̂m(σ̂) > 0

and since the elements of K̂d are positive matrices, so

we have to σ̂ • (K̂d ◦ [q∗e ⊗ σ̂ ⊗ qe]) > 0. Finally it is

concluded that V̇ < 0 and that the system converges

to zero. �

4.3 Robust Controller

Due to the computation process that is required for the

implementation of adaptive control and non-modeling

disturbances caused by the waves that water can pro-

duce, for this reason the adaptive control may not be

as efficient, due to this situation, robust control is pro-

posed to counteract these disturbances.

For robust control the equation can be rewritten the

equation (33) as:

˙̂q =
1

2
q̂ ⊗ ξ̂

˙̂
ξ =q∗e ⊗ {M̂o.1 ◦ τ̂in + Ŵ} ⊗ qe +

˙̂
ξde −−→ω e × ξ̂e,

(63)

where Ŵ = qe⊗{−→ω e×ξ̂e− ˙̂
ξde−Ĉ(ξ̂)−D̂(ξ̂)−ĝ(q̂)+ŵ+

M̂1◦τ̂in}⊗q∗e−M̂o.1◦τ̂in and M̂o.x is the dual quaternion

of parameters uncertainty of the quaternion dual Mx,

x = 1, 3 and M̂o.1 is bounded ‖M̂o.1−M̂1‖1 < ρ‖M̂o.1‖1,

where 0 < ρ < 1 and M̂o.1 ◦ M̂o.3 = I3×3 + εI3×3. Using

equation (49) we can rewrite the model of equation (63)

in terms of the error as:

˙̂eq̂e =êξ̂e
˙̂eξ̂e =M̂o.1 ◦ τ̂in + Ŵ ,

(64)

where τ̂in consists of the nominal control input τ̂N and

the robust compensating input τ̂RC as

τ̂in = τ̂N + τ̂RC. (65)
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The nominal control law is the PD control of the

equation (51) and the robust compensating input as

follows:

τ̂RC(s) = −M̂o.3 ◦ F̂ (s) ◦ Ŵ (s), (66)

where F̂ (s) is a robust filter that is introduced to re-

strain the effects of the uncertainties and is given by

F̂ (s) = Fω(s) + εFν(s) (67)

where s is the Laplace operator and the parameters, Fν
(s) = diag{ fu

s+fu

gu
s+gu

, fv
s+fv

gv
s+gv

, fw
s+fw

gw
s+gw

} and Fω(s)

= diag{ fp
s+fp

gp
s+gp

,
fq
s+fq

gq
s+gq

, fr
s+fr

gr
s+gr
} with fx and gx,

x = u, v, w, p, q, r are positive constants. We can

rewrite equation (67) as

F̂ (s) = F̂f1 ◦ F̂g1 ◦ F̂f2(s) ◦ F̂g2(s), (68)

where F̂α1
= Fαω1

+ εFαν1 , F̂α2
= Fαω2

+ εFαν2 ,

Fαω1
= diag{αp, αq, αr}, Fαν1 = diag{αu, αv, αw},

Fαω2
=diag{ 1

s+αp
, 1
s+αq

, 1
s+αr

} and Fαν2 =diag{ 1
s+αu

,
1

s+αv
, 1
s+αw

} where α = f, g. Note that the robust

compensating control τ̂RC(t) is not implementable in-

put thereby we can not measure W (t). Therefore, we

obtain W (t) from (64)

Ŵ = ¨̂eq̂e − M̂o.1 ◦ τ̂in, (69)

applying the Laplace to equation 69 we have to:

Ŵ (s) = s2êq̂e(s)− M̂o.1 ◦ τ̂in(s), (70)

from equation (70) and (66), we can have that

τ̂RC(s) =− M̂o.3 ◦ F̂ (s) ◦ [s2êq̂e(s)− M̂o.1 ◦ τ̂in(s)]

=M̂o.3 ◦ F̂f1 ◦ F̂g1 ◦ (−êq̂e(s) + Ẑ2(s)),

(71)

where

Ẑ2(s) =F̂f2(s) ◦ ((F̂f1 + F̂g1) ◦ êq̂e(s) + Ẑ1(s))

Ẑ1(s) =F̂g2(s) ◦ (−F̂g1 ◦ F̂g1 ◦ êq̂e(s) + M̂o.1 ◦ τ̂in(s)),

(72)

we can obtain τ̂RC applying the inverse Laplace to

equations (71) and (72)

τ̂RC(t) =M̂o.3 ◦ F̂f1
◦ F̂g1

◦ (−êq̂e(t) + Ẑ2(t))

˙̂
Z1(t) =− F̂g1

◦ Ẑ1(t)− F̂g1
◦ F̂g1

◦ êq̂e(t) + M̂o.1 ◦ τ̂in(t)

˙̂
Z2(t) =− F̂f1

◦ Ẑ2(t) + (F̂f1
+ F̂g1

) ◦ êq̂e(t) + Ẑ1(t).

(73)

For stability analysis the following theorem [35] was

used

Theorem 3: For a bounded initial state ê(0) =

[
−→
θ e

T
(0), −→w T

e (0)]T+ε[
−→
l Te (0), −→ν Te (0)]T , a finite-positive

constant T ∗, a provided constant ε > 0, with sufficiently

large parameters of the robust compensator fi, gi where

i = u, v, w, p, q, r which satisfy that fi >> gi > 0 and

we assume that:

– The sum F =
∑6
i=1 Fi of the thrusts is bounded and

satisfy that F ≤ δ, where δ is a positive constant.

– The vehicle goes at low speeds

– The reference signals are derivable throughout the

space.

– ‖Ŵ‖ is bounded

Then the state ê(t) are bounded and satisfies ‖e(t)‖∞ ≤
ε, ∀T ∗ ≤ t.

Proof:

From the equation (64) and (66), the state is de-

scribed as:

‖ê‖∞ ≤ ζê(0) + δs‖Ŵ‖∞, (74)

where

δs =‖[I6×6s−Ap]−1B̂p ◦ [Î3×3 − F̂ (s)]‖1

Ap =

[
03×3 I3×3
03×3 03×3

]
B̂p =

[
0̂3×3
M̂o.1

]
=

[
03×3
Mo.w2

]
+ ε

[
03×3
Mo.ν1

]
Î3×3 =I3×3 + εI3×3

ζê(0) = max
k

sup
0≤t

{
|dTk ◦ eAptê(0)|, |dTk_eAptê(0)|

}
,

(75)

with dk ∈ R6×1, Im×m ∈ Rm×m and 0n×n ∈ Rn×n
are a vector with zeros except one on the k-th row,

an unit matrix and zero matrix, respectively. From the

equations (64), (74) and (63) we have that there are

positive constants, W1, W2 and W3 such that

‖Ŵ‖∞ ≤W! +W2‖ê‖∞ +W3‖ê‖2∞. (76)

If δs satisfies that

(W2 +W3‖e‖∞)(
√
δs + δs) ≤ 1, (77)

from equations (77), (76) and (74), we have that

‖W‖∞ ≤W4/
√
δs, (78)

where (
√
δs + δs)W1 + ζê(0) ≤ W4. From eqs. (78) and

(74) gives

‖ê‖∞ ≤W4

√
δs + ζê(0). (79)
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Therefore, the state ‖ê‖∞ are bounded. From eq.

(77), one can have the attractive region as{
ê(t) : ‖ê‖∞ ≤

1

W3(
√
δs + δs)

−
W2

W3

}
, (80)

thus, if ê(t) starts from the attractive region and δs is

sufficiently small, that we have

W4

√
δs + ζê(0) ≤

1

W3(
√
δs + δs)

−
W2

W3
, (81)

from the equation (81) that the initial state ê(0) satis-

fies

‖ê(0)‖∞ ≤
1

W3(
√
δs + δs)

−
W2

W3
. (82)

If we chosen δs that it satisfy δs < (ε)2/(4W 2
4 ), then

we can obtain a finite-positive constant T ∗, with suf-

ficiently large parameters of the robust compensator

fi, gi where i = u, v, w, p, q, r. Finally we have that

the state ê(t) are bounded and satisfies ‖e(t)‖∞ ≤ ε,

∀T ∗ ≤ t. �.

5 Simulations

In this section, provide a general description of the

BlueROV2 and a set of simulations tests was performed

for comparison of tracking errors of controllers, consid-

ering the BlueROV2 model with dual quaternions.

5.1 Platform

Fig. 3 The BlueROV2 is a commercial UUV with a six
thruster vectored configuration, open-source electronics and
software.

The BlueROV2 is a 4DOF underwater vehicle used

for the numerical validation, see Figure 3. By design

the underwater vehicle is stable mechanically in φ and

θ, due to it’s two planes of symmetry and location of

buoyancy center. The prototype can operate in ROV

and UUV mode, with a maximum operating depth of

100m. The dimensions of the vehicle are 45.71×33.81×
22.1cm with a weight of 11.5Kg, the known parameters

of the vehicle are presented in Table (1).

Param. Value. Param. Value.
−→
W [0, 0, 112.815]T Xu̇ 5.5
−→
B [0, 0, 9.81mf ]T Zẇ 14.57
Izz 0.16 Yv̇ 12.7
Nṙ -0.12 mft 11.7023

Table 1 Physical and dynamic parameters of the vehicle.

Note that the underwater vehicle changes the value

of its mass when the vehicle is submerged, therefore,

the following equation is proposed

mf =


0 si z < −0.1

mft(5z + 0.5) si − 0.1 ≤ z ≤ 0.1

mft si 0.1 < z.

(83)

5.2 Simulation tests

Three scenarios are proposed for tracking a spherical

trajectory. The first is to validate a PD + G controller,

the second is to verify the efficiency of an adaptive con-

troller and finally a robust controller is proposed. The

initial conditions of the vehicle are
−→
P 0 = [0.0, 0.1]T and

q0 = 1. We propose a sphere trajectory qtr in the follow

equation,

PId =qtr ⊗−→r ⊗ q∗tr +−→r + 0.12k̂

qtr = cos
(Ω1

2

)
cos
(Ω2

2

)
− î sin

(Ω1

2

)
sin
(Ω2

2

)
+

ĵ cos
(Ω1

2

)
sin
(Ω2

2

)
+ k̂ sin

(Ω1

2

)
cos
(Ω2

2

)
qd = cos(Ω1/2) + k̂ sin(Ω1/2),

(84)

where −→r = [0, 0, 2.9]T , Ω1 = 0.4107t and Ω2 = π +

0.0391t. For external disturbances, in [36] proposed the

equations for modeling ocean current and waves are de-

noted by

δ̂m =0.2k̂ + 0.12 sin(0.1 ∗ t+
π

8
)+

εq∗ ⊗

0.5 + 0.15 cos(0.6t− π
3 )

0.3 + 0.14 cos(0.3t− π
6 )

0.5 + 0.15 sin(0.5t− π
4 )

⊗ q,
(85)

on the other hand, damping coefficients of equation (42)

are modeled as follows

d66 =0.07k̂ + 1.55|r|k̂
D11 =D1.1 +D1.2|−→ν |,

(86)
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where |−→ν | =
[
|u| |v| |w|

]T
,D1.1 = diag{4.03, 6.22, 5.18}

and D1.2 = diag{18.18, 21.66, 36.99}.

5.3 PD Control with desired Gravity Compensation

The first scenario is a PD+G controller, in this case

the gains are heuristically adjusted. The values of the

coefficients of the dual matrices of the equation (51) are

K̂p =9k̂ + diag{3.7, 5.2, 5}ε

K̂d =1.5k̂ + diag{1, 1, 3}ε.
(87)

For this simulation, the law of control is give for equa-

tion (50) and desired trajectory is (84). In the Figure 4,

we can observed that reference is reached on the axes

x and y but in the z axis is not reached because is not

robust against disturbances.

0 50 100 150

Time [s]

-2

0

2

x 
[m

]

0 50 100 150
Time [s]

-2

0

2

y 
[m

]

0 50 100 150

Time [s]

0

5

z 
[m

]

Fig. 4 Trajectory tracking using PD + G control on x, y
and z axes where blue solid lines are the real position, and
dashed red lines are the desired position.

The results of the orientation trajectory tracking are

present in Figure 5, note that the reference is reached

along trajectory tracking because the orientation dis-

turbances are small.

5.4 Adaptive Controller

The second scenario is an adaptive controller give in sec-

tion 4.2 and desired trajectory is (84). We assumed that

all elements of dual quaternion Ĉ are known and we es-

timated the hydrodynamic parameters of dual quater-

nion D̂, which are the values of the constants of equa-

tion (86), for this reason the dual quaternion Ŷ has the
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Fig. 5 Trajectory tracking of the quaternion with PD + G
control where q = q0+q1 ı̂+q2̂+q3k̂ is real quaternion (solid

blue lines) and qd = q0d + q1d ı̂ + q2d ̂ + q3d k̂ is the desired
quaternion (dashed red lines).

following form

Ŷ (ξ̂, β̂) =

 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

βr βr|r| 0 0 0 0 0 0

+

ε

0 0 βu βu|u| 0 0 0 0

0 0 0 0 βv βv|v| 0 0

0 0 0 0 0 0 βw βw|w|

 .
(88)

for this test, the initial conditions of the estimation vec-

tor of unknown parameters of equation (59) are [0, 0, 0,

0, 0, 0, 0, 0]T and Γ = diag{1 × 10−16, 1.57, 0.62, 6.1,

0.00142, 6.1, 2.44, 301.01, 0.0228}. The results of the tra-

jectory tracking can be seen in the Figure 6, in the figure

we can see that the error of the trajectory tracking is

small regardless of whether there are disturbances that

affect the vehicle and the of the trajectory tracking in

the orientation can be seen in the Figure 7 similarly, the

error is small regardless of the disturbances that affect

the vehicle.
On the other hand, in Figure 8 we can see the es-

timation of the hydrodynamic parameters obtained in

the simulation, notice that the estimation of the hydro-

dynamic parameters converges to the parameters intro-

duced in the simulation.5.5 Robust Controller

This scenario validate a robust controller give in section

4.3 and reference trajectory is (84). We assumed that

we do not know the hydrodynamic values of M̂3, the

values of the dual matrices of equation (73) are:

M̂o.1 =diag{1, 1, 3.333}+ diag{0.053, 0.0547, 0.0547}ε

M̂o.3 =diag{1, 1, 0.003}+ diag{18.870, 18.295, 18.295}ε

F̂g1
=diag{1, 1, 1}+ diag{40, 40, 0.9}ε

F̂f1
=diag{1, 1, 15}+ diag{100, 100, 20}ε,
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Fig. 6 Trajectory tracking using adaptive control on x, y
and z axes where blue solid lines are the real position, and
dashed red lines are the desired position.
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Fig. 7 Autonomous trajectory tracking of the quaternion
with the adaptive control where q = q0 + q1 ı̂ + q2̂ + q3k̂
is the real quaternion (solid blue lines) obtained with the

adaptive control and qd = q0d + q1d ı̂ + q2d ̂ + q3d k̂ is the
desired quaternion (dashed red lines).

(89)

In the Figure 9, we can observed that desired position is

reached from the beginning, whilst the trajectory track-

ing of the quaternion where we can see in Figure 10.

Notice that was possible to compensate for the distur-

bances in the orientation.

5.6 Comparative analysis of controllers efficiency

In the Figures 11 and 12, we can see the trajectory

tracking obtained with all controllers. When comparing

the track tracking of the previous controllers, we can

see that the trajectory tracking is reached in a similar

way with the adaptive controller and the robust control,

however, when calculating the mean square error we
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Fig. 8 Estimation of the hydrodynamics parameters where
red lines are the estimation of the hydrodynamics parameters
obtained with the adaptive control and blue lines are the
hydrodynamics parameters introduced into the simulation.
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Fig. 9 Trajectory tracking using robust control on x, y and
z axes where blue solid lines are the real position, and dashed
red lines are the desired position.

can say that the tracking error in position is more small

with adaptive controller, while that the tracking error in

orientation is most small with robust control, see Table

2. Note that, the adaptive controller needs to know the

hydrodynamic parameters and the computational cost

is higher.

On the other hand, the control inputs obtained with all

controllers can be seen in the Figure 13, note that the

control input of the robust control in y-axis orientation

is larger than the others at first, but then remains in a

range similar to the other control inputs, on the other

hand the control signal of the adaptive control in the

x-axis is larger than the other controllers at first, but

in the other control inputs almost the same intervals

are kept and another important point is with the PD

+ G control which is that the control input is within

a region ±40N ,this fact is interesting since although it
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Fig. 10 Trajectory tracking of the quaternion with the ro-
bust control where q = q0 + q1 ı̂ + q2̂ + q3k̂ is the real
quaternion (red lines) obtained with the robust control and

qd = q0d +q1d ı̂+q2d ̂+q3d k̂ is the desired quaternion (dashed
blue lines).

Fig. 11 Aerial view of the trajectory tracking where purple
line is the position using PD + G control, yellow line is the
position with Adaptive control, red line is the position using
Robust control and blue line is the desired position.

does not follow the trajectory as efficiently as the other

controllers it does not have over impulses like the rest.

xI yI zI θr
PD+G control 0.1659 0.5037 0.3521 0.182

Adaptive control 0.0046 0.0071 0.064 0.0293
Robust control 0.0201 0.0462 0.0742 0.0053

Table 2 Root mean square error criterion for PD + G con-
trol, adaptive controller and robust control. Notice that, the
most efficient controller was the adaptive control for trajec-
tory tracking in position but in orientation the robust control
is more efficient.
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Fig. 12 Trajectory tracking comparison of the three con-
trollers on x, y and z axis where yellow lines are the positions
obtained with the Adaptive control, red lines are the posi-
tions obtained with the Robust control, purple lines are the
positions obtained with the PD+G control, and blue lines are
the desired positions.
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Fig. 13 Control inputs where yellow lines are PD + G con-
trol, red lines are Adaptive control and blue lines are Robust
control.

6 Conclusion

In this research work, a kinematic and dynamic model

for BlueROV2 was developed using dual quaternions,

which allow us to calculate the position and orienta-

tion in a function without presenting singularities to

difference of the use of representation by Euler’s an-

gles. On the other hand,mathematical properties of the

model are obtained to facilitate the demonstration of

the stability of the controllers based on the theory of

dual quaternions. To validate the aforementioned, the

development of three controllers is proposed: PD+G,

adaptive control and robust control. In addition, a com-
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parison is made between controllers and it is observed

which one presents a better performance, based on the

graphs of the results and the data obtained from the

Table 2, where the RMSE values are shown, it is con-

cluded that the best performance index for the tracking

of trajectory in position, it is presented by the adaptive

controller, and for the case of orientation it is the ro-

bust controller. Therefore, we conclude that the adap-

tive controller has better performance. However, keep in

mind that adaptive control needs more available infor-

mation such as knowing the hydrodynamic parameters

of the vehicle, moreover to being sensitive to uncertain-

ties in the model.
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