1. C.C. Maresch, D.C. Stute, M.G. Alves, P.F. Oliveira, D.M. de Kretser, T. Linn, Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review, Hum Reprod Update.2018;24:86-105.
2. Y. Xu, L. Wang, J. He, Y. Bi, M. Li, T. Wang, L. Wang, Y. Jiang, M. Dai, J. Lu, M. Xu, Y. Li, N. Hu, J. Li, S. Mi, C.S. Chen, G. Li, Y. Mu, J. Zhao, L. Kong, J. Chen, S. Lai, W. Wang, W. Zhao, G. Ning, G. China Noncommunicable Disease Surveillance, Prevalence and control of diabetes in Chinese adults, JAMA. 2013;310:948-959.
3. E. S., Diabetic Nephropathy, Chronic Kidney Disease, Nutritional Pathophysiology of Obesity & Its Comorbidities. 2017; 161-189.
4. G.N. Thomas, C.Q. Jiang, S. Taheri, Z.H. Xiao, B. Tomlinson, B.M. Cheung, T.H. Lam, A.H. Barnett, K.K. Cheng, A systematic review of lifestyle modification and glucose intolerance in the prevention of type 2 diabetes, Curr Diabetes Rev. 2010;6:378-387.
5. B. Baccetti, A. La Marca, P. Piomboni, S. Capitani, E. Bruni, F. Petraglia, V. De Leo, Insulin-dependent diabetes in men is associated with hypothalamo-pituitary derangement and with impairment in semen quality, Hum Reprod. 2002;17:2673-2677.
6. M.G. Carvalho, K.M. Silva, V.H.V. Aristizabal, P.E.O. Ortiz, C.S. Paranzini, A. Melchert, J.L. Amaro, F.F. Souza, Effects of Obesity and Diabetes on Sperm Cell Proteomics in Rats, J Proteome Res. 2021;20:2628-2642.
7. R.A. Condorelli, S. La Vignera, L.M. Mongioi, A. Alamo, A.E. Calogero, Diabetes Mellitus and Infertility: Different Pathophysiological Effects in Type 1 and Type 2 on Sperm Function, Front Endocrinol (Lausanne). 2018;9:268.
8. F. Madeo, T. Eisenberg, F. Pietrocola, G.J.S. Kroemer, Spermidine in health and disease.2018;359.
9. F. Madeo, T. Eisenberg, S. Büttner, C. Ruckenstuhl, G.J.A. Kroemer, Spermidine: a novel autophagy inducer and longevity elixir. 2010;6:160-162.
10. N.N. Shahin, N.A. El-Nabarawy, A.S. Gouda, B. Megarbane, The protective role of spermine against male reproductive aberrations induced by exposure to electromagnetic field - An experimental investigation in the rat, Toxicol Appl Pharmacol. 2019;370:117-130.
11. J. Hu, X. Lu, X. Zhang, X. Shao, Y. Wang, J. Chen, B. Zhao, S. Li, C. Xu, C. Wei, Exogenous spermine attenuates myocardial fibrosis in diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress and the canonical Wnt signaling pathway, Cell Biol Int. 2020;44:1660-1670.
12. J.D. Mendez, F.L. Balderas, Inhibition by L-arginine and spermidine of hemoglobin glycation and lipid peroxidation in rats with induced diabetes, Biomed Pharmacother. 2006;60:26-31.
13. S.K. Sadasivan, B. Vasamsetti, J. Singh, V.V. Marikunte, A.M. Oommen, M.R. Jagannath, R. Pralhada Rao, Exogenous administration of spermine improves glucose utilization and decreases bodyweight in mice, Eur J Pharmacol. 2014;729:94-99.
14. J. Ma, X. Meng, Y. Liu, C. Yin, T. Zhang, P. Wang, Y. Park, H.J.J.o.e. Jung, Effects of a rhizome aqueous extract of Dioscorea batatas and its bioactive compound, allantoin in high fat diet and streptozotocin-induced diabetic mice and the regulation of liver, pancreas and skeletal muscle dysfunction. 2020;259:112926.
15. X. Lei, P. Huo, Y. Wang, Y. Xie, Q. Shi, H. Tu, J. Yao, Z. Mo, S. Zhang, Lycium barbarum Polysaccharides Improve Testicular Spermatogenic Function in Streptozotocin-Induced Diabetic Rats, Front Endocrinol (Lausanne). 2020;11:164.
16. J. Le, X. Lei, Y. Ren, Z. Li, H. Tu, F. Ding, X. Yi, Y. Zhou, Q. Liu, S. Zhang, Exogenous oestradiol benzoate induces male mice azoospermia through modulation of oxidative stress and testicular metabolic cooperation, Mol Med Rep. 2019;19:4955-4963.
17. A. Agarwal, S. Baskaran, N. Parekh, C.-L. Cho, R. Henkel, S. Vij, M. Arafa, M.K. Panner Selvam, R. Shah, Male infertility, The Lancet. 2021;397:319-333.
18. R. Singh, k. Singh, male Infertility: Understanding, Causes and Treatment. 2017.
19. P.R. Costanzo, S.M. Suarez, H.E. Scaglia, C. Zylbersztein, L.E. Litwak, P. Knoblovits, Evaluation of the hypothalamic-pituitary-gonadal axis in eugonadal men with type 2 diabetes mellitus, Andrology. 2014;2:117-124.
20. S. La Vignera, R. Condorelli, E. Vicari, R. D'Agata, A.E. Calogero, Diabetes mellitus and sperm parameters, J Androl. 2012;33:145-153.
21. C. Liu, C. Zhang, H. Du, X. Geng, H. Zhao, Remote ischemic preconditioning protects against ischemic stroke in streptozotocin-induced diabetic mice via anti-inflammatory response and anti-apoptosis, Brain Res. 2019;1724:146429.
22. X. Xu, T. Liang, Q. Wen, X. Lin, J. Tang, Q. Zuo, L. Tao, F. Xuan, R. Huang, Protective effects of total extracts of Averrhoa carambola L. (Oxalidaceae) roots on streptozotocin-induced diabetic mice, Cell Physiol Biochem. 2014; 33: 1272-1282.
23. S. Dadras, M.A. Abdollahifar, H. Nazarian, S.K. Ghoreishi, S. Fallahnezhad, P. Naserzadeh, V. Jajarmi, S. Chien, M. Bayat, Photobiomodulation improved stereological parameters and sperm analysis factors in streptozotocin-induced type 1 diabetes mellitus, J Photochem Photobiol B. 2018;186: 81-87.
24. E. Mangoli, A.R. Talebi, M. Anvari, M. Pourentezari, Effects of experimentally-induced diabetes on sperm parameters and chromatin quality in mice, Iran J Reprod Med. 2013;11:53-60.
25. A. Gugliucci, T. Menini, The polyamines spermine and spermidine protect proteins from structural and functional damage by AGE precursors: a new role for old molecules?, Life Sciences. 2003;72:2603-2616.
26. S. Rubinstein, H. Breitbart, Role of spermine in mammalian sperm capacitation and acrosome reaction, Biochem J. 1991; 278 ( Pt 1):25-28.
27. B.P. Singh, I. Saha, I. Nandi, M.J. Swamy, Spermine and spermidine act as chemical chaperones and enhance chaperone-like and membranolytic activities of major bovine seminal plasma protein, PDC-109, Biochem Biophys Res Commun. 2017:493:1418-1424.
28. P.L. Lefevre, M.F. Palin, B.D. Murphy, Polyamines on the reproductive landscape, Endocr Rev, 2011;32:694-712.
29. Y. Liu, Z. Yang, D. Kong, Y. Zhang, W. Yu, W. Zha, Metformin Ameliorates Testicular Damage in Male Mice with Streptozotocin-Induced Type 1 Diabetes through the PK2/PKR Pathway, Oxid Med Cell Longev. 2019;2019:5681701.
30. P.O. Koh, Streptozotocin-induced diabetes increases apoptosis through JNK phosphorylation and Bax activation in rat testes, J Vet Med Sci. 2007;69:969-971.
31. D. Yao, Y. GangYi, W.J.G. QiNan, diseases, Autophagic dysfunction of β cell dysfunction in type 2 diabetes, a double-edged sword. 2021;8:438-447.
32. J. Fan, X. Yang, J. Li, Z. Shu, J. Dai, X. Liu, B. Li, S. Jia, X. Kou, Y. Yang, N. Chen, Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway, Oncotarget, 2017;8:17475-17490.
33. C. Ravel, S. Jaillard, [The Sertoli cell], Morphologie. 2011;95:151-158.
34. Q. Zhu, X. Li, R.S. Ge, Toxicological Effects of Cadmium on Mammalian Testis, Front Genet. 2020;11:527.
35. A.P. Arikawe, A. Oyerinde, B. Olatunji, II, L.F. Obika, Streptozotocin diabetes and insulin resistance impairment of spermatogenesis in adult rat testis: central vs. local mechanism, Niger J Physiol Sci.2012;27:171-179.
36. R.S. Tavares, J.M.D. Portela, M.I. Sousa, P.C. Mota, J. Ramalho-Santos, S. Amaral, High glucose levels affect spermatogenesis: an in vitro approach, Reprod Fertil Dev. 2017;29:1369-1378.
37. M. Kopecky, V. Semecky, P.J.A.h. Nachtigal, Vimentin expression during altered spermatogenesis in rats. 2005;107:279-289.
38. D. He, D. Zhang, G. Wei, T. Lin, X.J.J.o.a. Li, Cytoskeleton vimentin disruption of mouse sertoli cells injured by nitrogen mustard in vitro. 2007;28:389-396.
39. Y. Xu, H. Lei, R. Guan, Z. Gao, H. Li, L. Wang, Y. Hui, F. Zhou, Z. Xin, Prophylactic protective effects and its potential mechanisms of IcarisideII on streptozotocin induced spermatogenic dysfunction, Int J Mol Sci. 2014;15:16100-16113.
40. J. Liang, N. Wang, J. He, J. Du, Y. Guo, L. Li, W. Wu, C. Yao, Z. Li, K.J.e. Kee, Induction of Sertoli-like cells from human fibroblasts by NR5A1 and GATA4. 2019;8.
41. X.D. Yi, Y.N. Zhanf, S. Xiao, X.C. Lei, [Role and regulatory mechanism of glycometabolism of Sertoli cells in spermatogenesis], Zhonghua Nan Ke Xue. 2019;25:923-927.
42. F. Boussouar, M. Benahmed, Lactate and energy metabolism in male germ cells, Trends Endocrinol Metab. 2004;15:345-350.
43. M.G. Alves, A.D. Martins, I. Jarak, A. Barros, J. Silva, M. Sousa, P.F. Oliveira, Testicular lactate content is compromised in men with Klinefelter Syndrome, Mol Reprod Dev. 2016;83:208-216.
44. M.G. Alves, A.D. Martins, P.I. Moreira, R.A. Carvalho, M. Sousa, A. Barros, J. Silva, S. Pinto, T. Simoes, P.F. Oliveira, Metabolic fingerprints in testicular biopsies from type 1 diabetic patients, Cell Tissue Res. 2015;362:431-440.
45. M.G. Alves, A.D. Martins, J.E. Cavaco, S. Socorro, P.F. Oliveira, Diabetes, insulin-mediated glucose metabolism and Sertoli/blood-testis barrier function, Tissue Barriers, 1 (2013) e23992.
46. M.G.J.E.o.R. Alves, Energetics of the Male Reproduction. 2018;1:451-457.
47. M.J. Meneses, R.L. Bernardino, R. Sa, J. Silva, A. Barros, M. Sousa, B.M. Silva, P.F. Oliveira, M.G. Alves, Pioglitazone increases the glycolytic efficiency of human Sertoli cells with possible implications for spermatogenesis, The international journal of biochemistry & cell biology. 2016;9:52-60.
48. T.R. Dias, R.L. Bernardino, M.G. Alves, J. Silva, A. Barros, M. Sousa, S. Casal, B.M. Silva, P.F. Oliveira, L-Theanine promotes cultured human Sertoli cells proliferation and modulates glucose metabolism, European journal of nutrition. 2019;58:2961-2970.
49. M.V. Ruiz-Perez, M.A. Medina, J.L. Urdiales, T.A. Keinanen, F. Sanchez-Jimenez, Polyamine metabolism is sensitive to glycolysis inhibition in human neuroblastoma cells, J Biol Chem. 2015;290:6106-6119.
50. L.A. Monticelli, M.D. Buck, A.L. Flamar, S.A. Saenz, E.D. Tait Wojno, N.A. Yudanin, L.C. Osborne, M.R. Hepworth, S.V. Tran, H.R. Rodewald, H. Shah, J.R. Cross, J.M. Diamond, E. Cantu, J.D. Christie, E.L. Pearce, D. Artis, Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation, Nat Immunol. 2016;17:656-665.
51. C.S. Rocha, A.D. Martins, L. Rato, B.M. Silva, P.F. Oliveira, M.G. Alves, Melatonin alters the glycolytic profile of Sertoli cells: implications for male fertility, Molecular human reproduction. 2014;20:1067-1076.