Arshad A (2017) Bacterial synthesis and applications of nanoparticles. Nano Sci Nano Technol 11(2):119. [Google Scholar]
Khatoon N, Alam H, Khan A (2019) Ampicillin Silver Nanoformulations against Multidrug resistant bacteria. Sci Rep 9:6848. https://doi.org/10.1038/s41598-019-43309-0
Yusof HM, Rahman NA, Mohamad R, Zaidan UH (2020) Microbial Mediated Synthesis of Silver Nanoparticles by Lactobacillus plantarum TA4 and Its Antibacterial and Antioxidant Activity. Appl Sci 10(19):6973. https://doi.org/10.3390/app10196973
Hong L, Kin WS, Lee SM, Kang SK, Choi YJ, Cho CS (2019) Pullulan Nanoparticles as Prebiotics Enhance the Antibacterial Properties of Lactobacillus plantarum Through the Induction of Mild Stress in Probiotics. Front Microbio 10:1–12. https://doi.org/10.3389/fmicb.2019.00142
Gillor O, Etzion A, Riley MA (2008) The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol 81:591–606. https://doi.org/10.1007/s00253-008-1726-5
Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12. https://doi.org/10.1086/595011
Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 362:1804–1813. https://doi.org/10.1056/nejmra0904124
Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Front Microbiol 9:1–26. https://doi.org/10.3389/fmicb.2018.01441
Rajawat S, Qureshi MS (2012) Comparative study on bactericidal effect of silver nanoparticles, synthesized using green technology, in combination with antibiotics on Salmonella typhi. J Biomater Nanobiotechnol 3:480–485. https://doi.org/10.4236/JBNB.2012.34049
Muzammil S, Hayat S, Fakhar EAM, Aslam B, Siddique MH, Nisar MA (2018) Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front Biosci 10:352–374. http://doi.org/10.2741/e827
Hemlata, Meena PR, Singh AP, Tejavath KK (2020) Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 5(10):5520–5528. http://doi.org/10.1021/acsomega.0c00155
Lee NY, Ko WC, Hsueh PR (2019) Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Front Pharmacol 10(1153):1–9. http://doi.org/10.3389/fphar.2019.01153
Mosallam SF, Amer E, Diab RG (2014) Potentiated anti-microsporidial activity of Lactobacillus acidophilus CH1 bacteriocin using gold nanoparticles. Exp Parasitol 144:14–21. http://doi.org/10.1016/j.exppara.2014.06.002
Akhtar N, Pathak K (2017) Probiotics as a Tool to Biosynthesize Metallic Nanoparticles: Research Reports and Patents Survey. Recent Pat on Drug Del Form,11: 5–18. 10.2174/1872211311666170313124335
Mikiciuk J, Mikiciuk E, Wronska A, Szterk A (2015) Antimicrobial potential of commercial silver nanoparticles and the characterization of their physical properties toward probiotic bacteria isolated from fermented milk products 51(4): 222–229. https://doi.org/10.1080/03601234.2015.1120614
Kalimathu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloid Surf B Biointer 65:150–153. http://doi.org/10.1016/j.colsurfb.2008.02.018
Garmasheva I, Kovalenko N, Voychuk S, Ostapchuk A, Livinska O, Oleschenko L (2016) Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro. Bioimpacts 6(4):219–223. http://doi.org/10.15171/bi.2016.29
Matei A, Matei S, Matei GM, Cogalniceanu G, Cornea CP (2020) Biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria, characterization and antifungal activity. EuroBiotech J 4:97–103. http://dx.doi.org/10.2478/ebtj-2020-0011
Berton V, Montesi F, Losasso C, Facco DR, Toffan A, Terregino C (2014) Study of the interaction between silver nanoparticles and Salmonella as revealed by transmission electron microscopy. J Prob Health 3:1–5. DOI:10.4172/2329-8901.1000123
Xiangqian L, Huizhong X, Zhe Sheng C, Guofang C (2011) Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J of nanomat 11:1–16. https://doi.org/10.1155/2011/270974
Viorica RP, Pawel P, Kinga M, Michal Z, Katarzyna R, Boguslaw B (2017) Lactococcus lactis as a safe and inexpensive source of bioactive silver composites. Appl microbio biotechn 101(19):7141–7153. https://doi.org/10.1007/s00253-017-8443-x
Haris P, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. Journal of Molecular Catalysis B: Enzymatic 7:207–221. http://doi.org/10.1016/S1381-1177(99)00030-2
Prasad KS, Pathak D, Patel A, Dalwadi P, Prasad R, Patel P, Selvaraj K (2011) Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afr J of Biotechn 10(41):122–8130. https://doi.org/10.5897/AJB11.394
Lu Z, Rong K, Li J, Yang H, Chen R (2013) Size dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med. 2013 24(6):1465–1471. http://doi.org/10.1007/s10856-013-4894-5
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechn 16(10):2346–2353. http://doi.org/10.1088/0957-4484/16/10/059
Moodley JS, Krishna SBN, Pillay K, Sershen, Govender P (2018). Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci Nanosci Nanotechnol 9(1): 1–9 Google Scholar
Kumar KK, Mahalakshmi S, Harikrishna N, Reddy G (2016) Production, characterization and antimicrobial activity of silver nanoparticles produced by Lactobacillus amylophilus GV6. E J OF Pharmaceut Med Res 3(7):236242
Sintubin L, De Windt W, Dick J, Mast J, Van Der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl microbio biotechn 84(4):741–749. https://doi.org/10.1007/s00253-009-2032
Ranganath E, Rathod v, Banu A (2012) Screening of Lactobacillus spp. for mediating the biosynthesis of silver nanoparticles from silver nitrate. IOSR J of Pharm 2(2):237–241. http://dx.doi.org/10.9790/3013-0220237241
Dhoondia ZH, Chakraborty H (2012) Lactobacillus mediated synthesis of silver oxide nanoparticles 2(15): 1–7 https://doi.org/10.57722F55741
Sarvamangala D, Kondala K, Sivakumar N, Babu MS, Manga S (2013) Synthesis, characterization and antimicrobial studies of AgNPs using probiotics. Int Res J Pharm 4:240–243. http://doi.org/10.7897/2230-8407.04352
Omidi B, Hashemi SJ, Bayat M, Larijani K (2014) Biosynthesis of silver nanoparticles by Lactobacillus fermentum. B of Environm Pharmaco and. L Sci 3(12):186–192 Google Scholar
Mew TW, Rosales AM (1986) Bacterization of rice plants for control of sheath blight caused by Rhizoctonia solani. Phytopath76: 1260–1264
Beekes M, Lasch P, Naumann D (2007) Analytical applications of Fourier transform-infrared (FTIR) spectroscopy in microbiology and prion research. Vet Microbiol 123(4):305–319. https://doi.org/10.1016/j.vetmic.2007.04.010
Milanowski M, Pomastowski P, Railean V, Rafinska K, Ligor T, Buszewski B (2017) Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products. PLoS ONE 12(3):e0174521. https://doi.org/10.1371/journal.pone.0174521
Naseer QA, Xue X, Wang X, Dang S, Din SU, kalsoom, Jamil J (2020) Synthesis of silver nanoparticles using Lactobacillus bulgaricus and assessment of their antibacterial potential. Braz J of Biol 84
https://doi.org/10.1590/1519-6984.232434
Kimura H, Sashihara T, Matsusaki H, Sonomoto K, Ishizaki A (1998) Novel bacteriocin of Pediococcus sp. ISK-1 isolated from well-aged bed of fermented rice bran. Ann N Y Acad Sci 13(864):345–3488. http://doi:10.1111/j.1749-6632