1 Anticevic, A., Schleifer, C. & Youngsun, T. C. Emotional and cognitive dysregulation in schizophrenia and depression: understanding common and distinct behavioral and neural mechanisms. Dialogues Clin Neurosci17, 421-434 (2015).
2 Cross-Disorder Group of the Psychiatric Genomics, C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet381, 1371-1379, doi:10.1016/S0140-6736(12)62129-1 (2013).
3 Parkes, L., Satterthwaite, T. D. & Bassett, D. S. Towards precise resting-state fMRI biomarkers in psychiatry: synthesizing developments in transdiagnostic research, dimensional models of psychopathology, and normative neurodevelopment. Curr Opin Neurobiol65, 120-128, doi:10.1016/j.conb.2020.10.016 (2020).
4 Pearlson, G. D. Applications of Resting State Functional MR Imaging to Neuropsychiatric Diseases. Neuroimaging Clin N Am27, 709-723, doi:10.1016/j.nic.2017.06.005 (2017).
5 Friston, K. J. Functional and effective connectivity: a review. Brain Connect1, 13-36, doi:10.1089/brain.2011.0008 (2011).
6 Luo, L. et al. Abnormal large-scale resting-state functional networks in drug-free major depressive disorder. Brain Imaging Behav, doi:10.1007/s11682-019-00236-y (2020).
7 Han, W. et al. Low-rank network signatures in the triple network separate schizophrenia and major depressive disorder. Neuroimage Clin22, 101725, doi:10.1016/j.nicl.2019.101725 (2019).
8 Shao, J. et al. Common and distinct changes of default mode and salience network in schizophrenia and major depression. Brain Imaging Behav12, 1708-1719, doi:10.1007/s11682-018-9838-8 (2018).
9 Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A103, 13848-13853, doi:10.1073/pnas.0601417103 (2006).
10 Schilbach, L. et al. Transdiagnostic commonalities and differences in resting state functional connectivity of the default mode network in schizophrenia and major depression. Neuroimage Clin10, 326-335, doi:10.1016/j.nicl.2015.11.021 (2016).
11 Chen, X. et al. Transdiagnostic differences in the resting-state functional connectivity of the prefrontal cortex in depression and schizophrenia. J Affect Disord217, 118-124, doi:10.1016/j.jad.2017.04.001 (2017).
12 Jiang, Y. et al. Aberrant Prefrontal-Thalamic-Cerebellar Circuit in Schizophrenia and Depression: Evidence From a Possible Causal Connectivity. Int J Neural Syst29, 1850032, doi:10.1142/S0129065718500326 (2019).
13 Yang, Y. et al. Common and Specific Functional Activity Features in Schizophrenia, Major Depressive Disorder, and Bipolar Disorder. Front Psychiatry10, 52, doi:10.3389/fpsyt.2019.00052 (2019).
14 Jiang, Y. et al. Common and distinct dysfunctional patterns contribute to triple network model in schizophrenia and depression: A preliminary study. Progress in Neuro-Psychopharmacology and Biological Psychiatry79, 302-310, doi:10.1016/j.pnpbp.2017.07.007 (2017).
15 Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of neuroscience : the official journal of the Society for Neuroscience27, 2349-2356, doi:10.1523/JNEUROSCI.5587-06.2007 (2007).
16 Dosenbach, N. U. et al. A core system for the implementation of task sets. Neuron50, 799-812, doi:10.1016/j.neuron.2006.04.031 (2006).
17 Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America105, 12569-12574, doi:10.1073/pnas.0800005105 (2008).
18 Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain structure & function214, 655-667, doi:10.1007/s00429-010-0262-0 (2010).
19 Dosenbach, N. U. et al. Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America104, 11073-11078, doi:10.1073/pnas.0704320104 (2007).
20 Menon, V. Salience Network. 597-611, doi:10.1016/b978-0-12-397025-1.00052-x (2015).
21 Uddin, L. Q. et al. Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex20, 2636-2646, doi:10.1093/cercor/bhq011 (2010).
22 Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect2, 125-141, doi:10.1089/brain.2012.0073 (2012).
23 Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage37, 90-101, doi:10.1016/j.neuroimage.2007.04.042 (2007).
24 Tu, P. C., Hsieh, J. C., Li, C. T., Bai, Y. M. & Su, T. P. Cortico-striatal disconnection within the cingulo-opercular network in schizophrenia revealed by intrinsic functional connectivity analysis: a resting fMRI study. NeuroImage59, 238-247, doi:10.1016/j.neuroimage.2011.07.086 (2012).
25 Huang, H. et al. Aberrant resting-state functional connectivity of salience network in first-episode schizophrenia. Brain Imaging Behav14, 1350-1360, doi:10.1007/s11682-019-00040-8 (2020).
26 Wang, C. et al. Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: findings from the LYRIKS study. Psychological medicine46, 2771-2783, doi:10.1017/S0033291716001410 (2016).
27 Dong, D., Wang, Y., Chang, X., Luo, C. & Yao, D. Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophrenia bulletin, doi:10.1093/schbul/sbx034 (2017).
28 Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F. & Tendolkar, I. Resting-state functional connectivity in major depressive disorder: A review. Neurosci Biobehav Rev56, 330-344, doi:10.1016/j.neubiorev.2015.07.014 (2015).
29 Raichle, M. E. The brain's default mode network. Annu Rev Neurosci38, 433-447, doi:10.1146/annurev-neuro-071013-014030 (2015).
30 Yin, Y. et al. Structural and Functional Connectivity of Default Mode Network underlying the Cognitive Impairment in Late-onset Depression. Sci Rep6, 37617, doi:10.1038/srep37617 (2016).
31 Grahn, J. A., Parkinson, J. A. & Owen, A. M. The cognitive functions of the caudate nucleus. Prog Neurobiol86, 141-155, doi:10.1016/j.pneurobio.2008.09.004 (2008).
32 Orliac, F. et al. Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia. Schizophrenia research148, 74-80, doi:10.1016/j.schres.2013.05.007 (2013).
33 Peters, S. K., Dunlop, K. & Downar, J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment. Frontiers in systems neuroscience10, 104, doi:10.3389/fnsys.2016.00104 (2016).
34 Palaniyappan, L. & Liddle, P. F. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. Journal of psychiatry & neuroscience : JPN37, 17-27, doi:10.1503/jpn.100176 (2012).
35 Palaniyappan, L., White, T. P. & Liddle, P. F. The concept of salience network dysfunction in schizophrenia: from neuroimaging observations to therapeutic opportunities. Current topics in medicinal chemistry12, 2324-2338 (2012).
36 Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. The American journal of psychiatry160, 13-23, doi:10.1176/appi.ajp.160.1.13 (2003).
37 Yu, Y. et al. Altered Amplitude of Low-Frequency Fluctuations in Inactive Patients with Nonneuropsychiatric Systemic Lupus Erythematosus. Neural Plast2019, 9408612, doi:10.1155/2019/9408612 (2019).
38 Jani, M. & Kasparek, T. Emotion recognition and theory of mind in schizophrenia: A meta-analysis of neuroimaging studies. World J Biol Psychiatry19, S86-S96, doi:10.1080/15622975.2017.1324176 (2018).
39 Zhou, S. Y. et al. Volumetric analysis of sulci/gyri-defined in vivo frontal lobe regions in schizophrenia: Precentral gyrus, cingulate gyrus, and prefrontal region. Psychiatry Res139, 127-139, doi:10.1016/j.pscychresns.2005.05.005 (2005).
40 Zhao, X. et al. Abnormalities of regional homogeneity and its correlation with clinical symptoms in Naive patients with first-episode schizophrenia. Brain Imaging Behav13, 503-513, doi:10.1007/s11682-018-9882-4 (2019).
41 Hare, S. M. et al. Salience-Default Mode Functional Network Connectivity Linked to Positive and Negative Symptoms of Schizophrenia. Schizophr Bull45, 892-901, doi:10.1093/schbul/sby112 (2019).
42 Brakowski, J. et al. Resting state brain network function in major depression - Depression symptomatology, antidepressant treatment effects, future research. J Psychiatr Res92, 147-159, doi:10.1016/j.jpsychires.2017.04.007 (2017).
43 Manoliu, A. et al. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front Hum Neurosci7, 930, doi:10.3389/fnhum.2013.00930 (2013).