1. Sata F (2016) Developmental Origins of Health and Disease (DOHaD) and Epidemiology. Jpn J Hyg 71:41–46. (In Japanese) https://doi.org/10.1265/jjh.71.41
2. Khulan B, Liu L, Rose CM, Boyle AK, Manning JR, Drake AJ (2016) Glucocorticoids accelerate maturation of the heme pathway in fetal liver through effects on transcription and DNA methylation. Epigenetics 11:103–109. https://doi.org/10.1080/15592294.2016.1144006
3. Rog-Zielinska EA, Richardson RV, Denvir MA, Chapman KE (2014) Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J Mol Endocrinol 52:R125–R135. https://doi.org/10.1530/JME-13-0204
4. Hayes EJ, Paul DA, Stahl GE, Seibel-Seamon J, Dysart K, Leiby BE, Mackley AB, Berghella V (2008) Effect of antenatal corticosteroids on survival for neonates born at 23 weeks of gestation. Obstet Gynecol 111:921–926. https://doi.org/10.1097/AOG.0b013e318169ce2d
5. Sakurai K, Osada Y, Takeba Y, Mizuno M, Tsuzuki Y, Ohta Y, Ootaki M, Iri T, Aso K, Yamamoto H, Matsumoto N (2019) Exposure of immature rat heart to antenatal glucocorticoid results in cardiac proliferation. Pediatr Int 61:31–42. https://doi.org/10.1111/ped.13725
6. Mizuno M, Takeba Y, Matsumoto N, Tsuzuki Y, Asoh K, Takagi M, Kobayashi S, Yamamoto H (2010) Antenatal glucocorticoid therapy accelerates ATP production with creatine kinase increase in the growth-enhanced fetal rat heart. Circ J 74:171–180. https://doi.org/10.1253/circj.cj-09-0311
7. Tsuzuki Y, Takeba Y, Kumai T, Matsumoto N, Mizuno M, Murano K, Asoh K, Takagi M, Yamamoto H, Kobayashi S (2009) Antenatal glucocorticoid therapy increase cardiac a-enolase levels infetus and neonate rats. Life Sci 85:609–616. https://doi.org/10.1016/j.lfs.2009.06.017
8. Grijalva J, Vakili K (2013) Neonatal liver physiology. Semin Pediatr Surg 22:185–189. https://doi.org/10.1053/j.sempedsurg.2013.10.006
9. Woodgate P, Jardine LA (2015) Neonatal jaundice: phototherapy. BMJ Clin Evid 2015: 0319.
10. Baribault H, Marceau N (1986) Dexamethasone and dimethylsulfoxide as distinct regulators of growth and differentiation of cultured suckling rat hepatocytes. J Cell Physiol 129:77–84. https://doi.org/10.1002/jcp.1041290112
11. Monga SPS, Tang Y, Candotti F, Rashid A, Wildner O, Mishra B, Iqbal S, Mishra L (2001) Expansion of hepatic and hematopoietic stem cells utilizing mouse embryonic liver explants. Cell Transplant 10:81–89. https://doi.org/10.3727/000000001783986945
12. Snykers S, De Kock J, Rogiers V, Vanhaecke T (2009) In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells 27:577–605. https://doi.org/10.1634/stemcells.2008-0963
13. Ozdemir H, Guvenal T, Cetin M, Kaya T, Cetin A (2003) A placebo-controlled comparison of effects of repetitive doses of betamethasone and dexamethasone on lung maturation and lung, liver, and body weights of mouse pups. Pediatr Res 53:98–103. https://doi.org/10.1203/00006450-200301000-00017
14. Shiojiri N (1997) Development and differentiation of bile ducts in the mammalian liver. Microsc Res Tech 39:328–335. https://doi.org/10.1002/(SICI)1097-0029(19971115)39:4<328::AID-JEMT3>3.0.CO;2-D
15. Kamiya A, Kinoshita T, Ito Y, Matsui T, Morikawa Y, Senba E, Nakashima K, Taga T, Yoshida K, Kishimoto T, Miyajima A (1999) Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J 18:2127–2136. https://doi.org/10.1093/emboj/18.8.2127
16. Asahina K, Fujimori H, Shimizu-Saito K, Kumashiro Y, Okamura K, Tanaka Y, Teramoto K, Arii S, Teraoka H (2004) Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells 9:1297–1308. https://doi.org/10.1111/j.1365-2443.2004.00809.x
17. Kishi M, Emi Y, Sakaguchi M, Ikushiro S, Iyanagi T (2008) Ontogenic isoform switching of UDP-glucuronosyltransferase family 1 in rat liver. Biochem Biophys Res Commun 377:815–819. https://doi.org/10.1016/j.bbrc.2008.10.043
18. Samtani MN, Pyszczynski NA, Dubois DC, Almon RR, Jusko WJ (2006a) Modeling glucocorticoid-mediated fetal lung maturation: I. Temporal patterns of corticosteroids in rat pregnancy. J Pharmacol Exp Ther 317:117-126. https://doi.org/10.1124/jpet.105.095851
19. Samtani MN, Pyszczynski NA, Dubois DC, Almon RR, Jusko WJ (2006b) Modeling glucocorticoid-mediated fetal lung maturation: II. Temporal patterns of gene expression in fetal rat lung. J Pharmacol Exp Ther 317:127-138. https://doi.org/10.1124/jpet.105.095869
20. Bhutani VK, Wong RJ (2013) Bilirubin neurotoxicity in preterm infants: risk and prevention. J Clin Neonatol 2:61–69. https://doi.org/10.4103/2249-4847.116402
21. Wynne K, Rowe C, Delbridge M, Watkins B, Brown K, Addley J, Woods A, Murray H (2020) Antenatal corticosteroid administration for foetal lung maturation. F1000 Faculty Rev 219. https://doi.org/10.12688/f1000research.20550.1
22. Agnew EJ, Ivy JR, Stock SJ, Chapman KE (2018) Glucocorticoids, antenatal corticosteroid therapy and fetal heart maturation. J Mol Endocrinol 61:R61–R73. https://doi.org/10.1530/JME-18-0077
23. Smith LM, Qureshi N, Chao CR (2000) Effects of single and multiple courses of antenatal glucocorticoids in preterm newborns less than 30 weeks' gestation. J Matern Fetal Med 9:131–135. https://doi.org/10.1002/(SICI)1520-6661(200003/04)9:2<131::AID-MFM9>3.0.CO;2-M
24. Takeba Y, Sakurai K, Osada Y, Mizuno M, Tsuzuki Y, Ohta Y, Ootaki M, Watanabe M, Machida T, Watanabe D, Nakamura Y, Kobayashi T, Iiri T, Naoki Matsumoto (2018) Production of bilirubin transporters, multidrug resistance-associated protein 2 in the fetal rat liver with antenatal glucocorticoid administration. St. Marianna Med J 45: 281–287. (In Japanese)
25. Gruppuso PA, Bienieki TC, Faris RA (1999) The relationship between differentiation and proliferation in late gestation fetal rat hepatocytes. Pediatr Res 46:14–19. https://doi.org/10.1203/00006450-199907000-00003
26. Porter LA, Donoghue DJ (2003) Cyclin B1 and CDK1: nuclear localization and upstream regulators. Prog Cell Cycle Res 5:335–347.
27. Masson NM, Currie IS, Terrace JD, Garden OJ, Parks RW, Ross JA (2006) Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1. Am J Physiol Gastrointest Liver Physiol 291:G45–G54. https://doi.org/10.1152/ajpgi.00465.2005
28. Fiegel HC, Park JJ, Lioznov MV, Martin A, Jaeschke-Melli S, Kaufmann PM, Fehse B, Zander AR, Kluth D (2003) Characterization of cell types during rat liver development. Hepatology 37:148–154. https://doi.org/10.1053/jhep.2003.50007
29. Nishina H (2012) hDlk-1: a cell surface marker common to normal hepatic stem/progenitor cells and carcinomas. J Biochem 152:121–123. https://doi.org/10.1093/jb/mvs069
30. Tanimizu N, Tsujimura T, Takahide K, Kodama T, Nakamura K, Miyajima A (2004) Expression of Dlk/Pref-1 defines a subpopulation in the oval cell compartment of rat liver. Gene Expr Patterns 5:209–218. https://doi.org/10.1016/j.modgep.2004.08.003
31. Derman E, Krauter K, Walling L, Weinberger C, Ray M, Darnell JE Jr. (1981) Transcriptional control in the production of liver-specific mRNAs. Cell 23:731–739. https://doi.org/10.1016/0092-8674(81)90436-0
32. Panduro A, F Shalaby, D A Shafritz (1987) Changing patterns of transcriptional and post-transcriptional control of liver-specific gene expression during rat development. Genes Dev 1:1172–1182. https://doi.org/10.1101/gad.1.10.1172
33. Jochheim A, Hillemann T, Kania G, Scharf J, Attaran M, Manns MP, Wobus AM, Ott M (2004) Quantitative gene expression profiling reveals a fetal hepatic phenotype of murine ES-derived hepatocytes. Int J Dev Biol 48:23–29. https://doi.org/10.1387/ijdb.15005571
34. Sell S (2008) Alpha-fetoprotein, stem cells and cancer: how study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer. Tumour Biol 29:161–180. https://doi.org/10.1159/000143402
35. Zhang W, Li W, Liu B, Wang P, Li W, Zhang H (2012) Efficient generation of functional hepatocyte-like cells from human fetal hepatic progenitor cells in vitro. J Cell Physiol 227:2051–2058. https://doi.org/10.1002/jcp.22934
36. Nava S, Westgren M, Jaksch M, Tibell A, Broomé U, Ericzon, BG, Sumitran-Holgersson S (2005) Characterization of cells in the developing human liver. Differentiation 73:249–260. https://doi.org/10.1111/j.1432-0436.2005.00019.x
37. Kamiya A, Kinoshita T, Miyajima A (2001) Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett 492:90-94. https://doi.org/10.1016/s0014-5793(01)02140-8
38. Li J, Ning G, Duncan SA (2000) Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes Dev 14:464–474. https://doi.org/10.1101/gad.14.4.464
39. Parviz F, Matullo C, Garrison WD, Savatski L, Adamson JW, Ning G, Kaestner KH, Rossi JM, Zaret KS, Duncan SA (2003) Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet 34:292–296. https://doi.org/10.1038/ng1175
40. Dean S, Tang JI, Seckl JR, Nyirenda MJ (2010) Developmental and tissue-specific regulation of hepatocyte nuclear factor 4-alpha (HNF4-alpha) isoforms in rodents. Gene Expr 14:337–344. https://doi.org/10.3727/105221610x12717040569901
41. Nyirenda MJ, Dean S, Lyons V, Chapman KE, Seckl JR (2006) Prenatal programming of hepatocyte nuclear factor 4alpha in the rat: A key mechanism in the 'foetal origins of hyperglycaemia'? Diabetologia 49:1412–1420. https://doi.org/10.1007/s00125-006-0188-5