1. Schatten H: Brief Overview of Prostate Cancer Statistics, Grading, Diagnosis and Treatment Strategies. Advances in experimental medicine and biology 2018, 1095:1-14.
2. Gomella LG: Prostate Cancer Statistics: Anything You Want Them To Be. The Canadian journal of urology 2017, 24(1):8603-8604.
3. Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J, Morrison H, Sonawane B, Shifflett T, Waters DJ et al: Human prostate cancer risk factors. Cancer 2004, 101(10 Suppl):2371-2490.
4. Pienta KJ, Esper PS: Risk factors for prostate cancer. Annals of internal medicine 1993, 118(10):793-803.
5. Kolonel LN, Altshuler D, Henderson BE: The multiethnic cohort study: exploring genes, lifestyle and cancer risk. Nature reviews Cancer 2004, 4(7):519-527.
6. Dagnelie PC, Schuurman AG, Goldbohm RA, Van den Brandt PA: Diet, anthropometric measures and prostate cancer risk: a review of prospective cohort and intervention studies. BJU international 2004, 93(8):1139-1150.
7. Evans AJ: Treatment effects in prostate cancer. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 2018, 31(S1):S110-121.
8. Lee JT: Epigenetic regulation by long noncoding RNAs. Science 2012, 338(6113):1435-1439.
9. Yang S, Sun Z, Zhou Q, Wang W, Wang G, Song J, Li Z, Zhang Z, Chang Y, Xia K et al: MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer management and research 2018, 10:2249-2257.
10. Gao C, Lu W, Lou W, Wang L, Xu Q: Long noncoding RNA HOXC13-AS positively affects cell proliferation and invasion in nasopharyngeal carcinoma via modulating miR-383-3p/HMGA2 axis. Journal of cellular physiology 2019, 234(8):12809-12820.
11. Huarte M: The emerging role of lncRNAs in cancer. Nature medicine 2015, 21(11):1253-1261.
12. Bhat SA, Ahmad SM, Mumtaz PT, Malik AA, Dar MA, Urwat U, Shah RA, Ganai NA: Long non-coding RNAs: Mechanism of action and functional utility. Non-coding RNA research 2016, 1(1):43-50.
13. Reddy KB: MicroRNA (miRNA) in cancer. Cancer cell international 2015, 15:38.
14. Luo ZF, Peng Y, Liu FH, Ma JS, Hu G, Lai SL, Lin H, Chen JJ, Zou GM, Yan Q et al: Long noncoding RNA SNHG14 promotes malignancy of prostate cancer by regulating with miR-5590-3p/YY1 axis. European review for medical and pharmacological sciences 2020, 24(9):4697-4709.
15. Dong ZQ, Guo ZY, Xie J: The lncRNA EGFR-AS1 is linked to migration, invasion and apoptosis in glioma cells by targeting miR-133b/RACK1. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2019, 118:109292.
16. Guo F, Zhu X, Zhao Q, Huang Q: miR5893p sponged by the lncRNA TINCR inhibits the proliferation, migration and invasion and promotes the apoptosis of breast cancer cells by suppressing the Akt pathway via IGF1R. International journal of molecular medicine 2020, 46(3):989-1002.
17. Ma JY, Liu SH, Chen J, Liu Q: Metabolism-related long non-coding RNAs (lncRNAs) as potential biomarkers for predicting risk of recurrence in breast cancer patients. Bioengineered 2021, 12(1):3726-3736.
18. Krasniqi E, Sacconi A, Marinelli D, Pizzuti L, Mazzotta M, Sergi D, Capomolla E, Donzelli S, Carosi M, Bagnato A et al: MicroRNA-based signatures impacting clinical course and biology of ovarian cancer: a miRNOmics study. Biomarker research 2021, 9(1):57.
19. Ballantyne MD, McDonald RA, Baker AH: lncRNA/MicroRNA interactions in the vasculature. Clinical pharmacology and therapeutics 2016, 99(5):494-501.
20. Jiang X, Guo S, Zhang Y, Zhao Y, Li X, Jia Y, Xu Y, Ma B: LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cellular signalling 2020, 65:109422.
21. Zhang C, Wang GX, Fu B, Zhou XC, Li Y, Li YY: LncRNA CASC15 promotes migration and invasion in prostate cancer via targeting miR-200a-3p. European review for medical and pharmacological sciences 2019, 23(19):8303-8309.
22. Zhang W, Liu Q, Zhao J, Wang T, Wang J: Long Noncoding RNA AATBC Promotes the Proliferation and Migration of Prostate Cancer Cell Through miR-1245b-5p/CASK Axis. Cancer management and research 2021, 13:5091-5100.
23. Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Davila-Gonzalez D, Wang K, Sanchez V, Dean PT, Combs SE et al: Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Science translational medicine 2016, 8(334):334ra353.
24. Duru N, Fan M, Candas D, Menaa C, Liu HC, Nantajit D, Wen Y, Xiao K, Eldridge A, Chromy BA et al: HER2-associated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research 2012, 18(24):6634-6647.
25. Teng TS, Lin B, Manser E, Ng DC, Cao X: Stat3 promotes directional cell migration by regulating Rac1 activity via its activator betaPIX. Journal of cell science 2009, 122(Pt 22):4150-4159.
26. Xiong H, Zhang ZG, Tian XQ, Sun DF, Liang QC, Zhang YJ, Lu R, Chen YX, Fang JY: Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 2008, 10(3):287-297.
27. Lo HW, Cao X, Zhu H, Ali-Osman F: Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clinical cancer research : an official journal of the American Association for Cancer Research 2008, 14(19):6042-6054.
28. Lv Y, Song G, Li P: Correlation of SOCS-1 gene with onset and prognosis of breast cancer. Oncology letters 2018, 16(1):383-387.
29. Ram PA, Waxman DJ: SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. The Journal of biological chemistry 1999, 274(50):35553-35561.
30. Akhtar LN, Benveniste EN: Viral exploitation of host SOCS protein functions. Journal of virology 2011, 85(5):1912-1921.
31. Kotaja N, Karvonen U, Janne OA, Palvimo JJ: PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Molecular and cellular biology 2002, 22(14):5222-5234.
32. Sasaki A, Yasukawa H, Suzuki A, Kamizono S, Syoda T, Kinjyo I, Sasaki M, Johnston JA, Yoshimura A: Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes to cells : devoted to molecular & cellular mechanisms 1999, 4(6):339-351.
33. Vainchenker W, Constantinescu SN: JAK/STAT signaling in hematological malignancies. Oncogene 2013, 32(21):2601-2613.
34. Mahony R, Ahmed S, Diskin C, Stevenson NJ: SOCS3 revisited: a broad regulator of disease, now ready for therapeutic use? Cellular and molecular life sciences : CMLS 2016, 73(17):3323-3336.
35. Hu Y, Luo X, Zhou J, Chen S, Gong M, Deng Y, Zhang H: Piperlongumine inhibits the progression of osteosarcoma by downregulating the SOCS3/JAK2/STAT3 pathway via miR-30d-5p. Life sciences 2021, 277:119501.
36. Attia YM, Tawfiq RA, Gibriel AA, Ali AA, Kassem DH, Hammam OA, Elmazar MM: Activation of FXR modulates SOCS3/Jak2/STAT3 signaling axis in a NASH-dependent hepatocellular carcinoma animal model. Biochemical pharmacology 2021, 186:114497.
37. Wang H, Zhan M, Liu Q, Wang J: Glycochenodeoxycholate promotes the metastasis of gallbladder cancer cells by inducing epithelial to mesenchymal transition via activation of SOCS3/JAK2/STAT3 signaling pathway. Journal of cellular physiology 2020, 235(2):1615-1623.
38. Kong PZ, Yang F, Li L, Li XQ, Feng YM: Decreased FOXF2 mRNA expression indicates early-onset metastasis and poor prognosis for breast cancer patients with histological grade II tumor. PloS one 2013, 8(4):e61591.
39. Sun L, Zheng W, Liu QD, Ge L: Valproic Acid Protects Chondrocytes from LPS-Stimulated Damage via Regulating miR-302d-3p/ITGB4 Axis and Mediating the PI3K-AKT Signaling Pathway. Frontiers in molecular biosciences 2021, 8:633315.
40. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, Wong J, Ding S, Seki E, Schnabl B et al: New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 2018, 560(7717):198-203.
41. Yu F, Lin Y, Xu X, Liu W, Tang D, Zhou X, Wang G, Zheng Y, Xie A: Knockdown of GSG2 inhibits prostate cancer progression in vitro and in vivo. International journal of oncology 2020, 57(1):139-150.
42. Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, Feng YM: Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. British journal of cancer 2014, 110(3):724-732.
43. Chen J, Huang X, Wang W, Xie H, Li J, Hu Z, Zheng Z, Li H, Teng L: LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging 2018, 10(11):3371-3381.
44. Liu S, Duan K, Zhang X, Cao X, Wang X, Meng F, Liu H, Xu B, Wang X: Circ_0081001 down-regulates miR-494-3p to enhance BACH1 expression and promotes osteosarcoma progression. Aging 2021, 13.
45. Zhang C, Cao J, Lv W, Mou H: CircRNA_100395 Carried by Exosomes From Adipose-Derived Mesenchymal Stem Cells Inhibits the Malignant Transformation of Non-Small Cell Lung Carcinoma Through the miR-141-3p-LATS2 Axis. Frontiers in cell and developmental biology 2021, 9:663147.
46. Fu D, Zang L, Li Z, Fan C, Jiang H, Men T: Long non-coding RNA CRNDE regulates the growth and migration of prostate cancer cells by targeting microRNA-146a-5p. Bioengineered 2021, 12(1):2469-2479.
47. Liu B, Jiang HY, Yuan T, Zhou WD, Xiang ZD, Jiang QQ, Wu DL: Long non-coding RNA AFAP1-AS1 facilitates prostate cancer progression by regulating miR-15b/IGF1R axis. Current pharmaceutical design 2021.
48. Li S, Zhang Y, Dong J, Li R, Yu B, Zhao W, Liu J: LINC00893 inhibits papillary thyroid cancer by suppressing AKT pathway via stabilizing PTEN. Cancer biomarkers : section A of Disease markers 2021, 30(3):277-286.
49. Barbier J, Chen X, Sanchez G, Cai M, Helsmoortel M, Higuchi T, Giraud P, Contreras X, Yuan G, Feng Z et al: An NF90/NF110-mediated feedback amplification loop regulates dicer expression and controls ovarian carcinoma progression. Cell research 2018, 28(5):556-571.
50. Tian L, Cao J, Ji Q, Zhang C, Qian T, Song X, Huang B, Tian X: The downregulation of miR-3173 in B-cell acute lymphoblastic leukaemia promotes cell invasion via PTK2. Biochemical and biophysical research communications 2017, 494(3-4):569-574.
51. Marrocco I, Altieri F, Rubini E, Paglia G, Chichiarelli S, Giamogante F, Macone A, Perugia G, Magliocca FM, Gurtner A et al: Shmt2: A Stat3 Signaling New Player in Prostate Cancer Energy Metabolism. Cells 2019, 8(9).
52. Kim JK, Kim JY, Kim HJ, Park KG, Harris RA, Cho WJ, Lee JT, Lee IK: Scoparone exerts anti-tumor activity against DU145 prostate cancer cells via inhibition of STAT3 activity. PloS one 2013, 8(11):e80391.
53. Bao X, Zhu J, Ren C, Zhao A, Zhang M, Zhu Z, Lu X, Zhang Y, Li X, Sima X et al: beta-elemonic acid inhibits growth and triggers apoptosis in human castration-resistant prostate cancer cells through the suppression of JAK2/STAT3/MCL-1 and NF-kB signal pathways. Chemico-biological interactions 2021, 342:109477.
54. Wang J, Nasser MI, Adlat S, Ming Jiang M, Jiang N, Gao L: Atractylenolide II Induces Apoptosis of Prostate Cancer Cells through Regulation of AR and JAK2/STAT3 Signaling Pathways. Molecules 2018, 23(12).
55. Huo SF, Shang WL, Yu M, Ren XP, Wen HX, Chai CY, Sun L, Hui K, Liu LH, Wei SH et al: STEAP1 facilitates metastasis and epithelial-mesenchymal transition of lung adenocarcinoma via the JAK2/STAT3 signaling pathway. Bioscience reports 2020, 40(6).
56. Su T, Wang YP, Wang XN, Li CY, Zhu PL, Huang YM, Yang ZY, Chen SB, Yu ZL: The JAK2/STAT3 pathway is involved in the anti-melanoma effects of brevilin A. Life sciences 2020, 241:117169.
57. Joung YH, Na YM, Yoo YB, Darvin P, Sp N, Kang DY, Kim SY, Kim HS, Choi YH, Lee HK et al: Combination of AG490, a Jak2 inhibitor, and methylsulfonylmethane synergistically suppresses bladder tumor growth via the Jak2/STAT3 pathway. International journal of oncology 2014, 44(3):883-895.
58. Ayub SG, Kaul D: miR-2909 regulates ISGylation system via STAT1 signalling through negative regulation of SOCS3 in prostate cancer. Andrology 2017, 5(4):790-797.
59. Handle F, Erb HH, Luef B, Hoefer J, Dietrich D, Parson W, Kristiansen G, Santer FR, Culig Z: SOCS3 Modulates the Response to Enzalutamide and Is Regulated by Androgen Receptor Signaling and CpG Methylation in Prostate Cancer Cells. Molecular cancer research : MCR 2016, 14(6):574-585.
60. Kneitz B, Krebs M, Kalogirou C, Schubert M, Joniau S, van Poppel H, Lerut E, Kneitz S, Scholz CJ, Strobel P et al: Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer research 2014, 74(9):2591-2603.
61. Zhu JG, Yuan DB, Chen WH, Han ZD, Liang YX, Chen G, Fu X, Liang YK, Chen GX, Sun ZL et al: Prognostic value of ZFP36 and SOCS3 expressions in human prostate cancer. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 2016, 18(8):782-791.
62. Yoneda T, Kunimura N, Kitagawa K, Fukui Y, Saito H, Narikiyo K, Ishiko M, Otsuki N, Nibu KI, Fujisawa M et al: Overexpression of SOCS3 mediated by adenovirus vector in mouse and human castration-resistant prostate cancer cells increases the sensitivity to NK cells in vitro and in vivo. Cancer gene therapy 2019, 26(11-12):388-399.