[1] L. Cao, C. Liu, D. Zou, S. Zhang, Y. Chen, Using cellulose nanocrystals as sustainable additive to enhance mechanical and shape memory properties of PLA/ENR thermoplastic vulcanizates, Carbohydrate Polymers 230 (2020) 115618.
[2] C.C. Satam, C.W. Irvin, C.J. Coffey, R.K. Geran, R. Ibarra-Rivera, M.L. Shofner, J.C. Meredith, Controlling barrier and mechanical properties of cellulose nanocrystals by blending with chitin nanofibers, Biomacromolecules 21 (2020) 545-555.
[3] N. Dhar, D. Au, R.C. Berry, K.C. Tam, Interactions of nanocrystalline cellulose with an oppositely charged surfactant in aqueous medium, Colloids and Surfaces A: Physicochemical and Engineering Aspects 415 (2012) 310-319.
[4] C.-M. Popescu, D. Jones, J. Schalnat, K. Segerholm, M. Henriksson, M. Westin, Structural characterization and mechanical properties of wet-processed fibreboard based on chemo-thermomechanical pulp, furanic resin and cellulose nanocrystals, International Journal of Biological Macromolecule 145 (2020) 586-593.
[5] E. Limousin, I. Rafaniello, T. Schäfer, N. Ballard, J.M. Asua, Linking film structure and mechanical properties in nanocomposite films formed from dispersions of cellulose Nanocrystals and ccrylic latexes, Langmuir 36 (2020) 2052-2062.
[6] M. Li, X. Zhao, Y. Li, W. Wang, W. Zhong, M. Luo, Y. Lu, K. Liu, Q. Liu, Y. Wang, D. Wang, Synergistic improvement for mechanical, thermal and optical properties of PVA-co-PE nanofiber/epoxy composites with cellulose nanocrystals, Composite Science and Technology 188 (2020) 107990.
[7] T. Aziz, H. Fan, F. Haq, F.U. Khan, A. Numan, A. Ullah, N. Wazir, Facile modification and application of cellulose nanocrystals, Iranian Polymer Journal 28 (2019) 707-724.
[8] M. Rincon-Iglesias, E. Lizundia, D.M. Correia, C.M. Costa, S. Lanceros-Mendez, The role of CNC surface modification on the structural, thermal and electrical properties of poly(vinylidene fluoride) nanocomposites, Cellulose 27 (2020) 3821-3834.
[9] E. Pietrzak, P. Wiecinska, M. Szafran, 2-carboxyethyl acrylate as a new monomer preventing negative effect of oxygen inhibition in gelcasting of alumina, Ceramic International 42 (2016) 13682-13688.
[10] S. Alharthi, Z. El Rassi, Poly(2-carboxyethyl acrylate-co-ethylene glycol dimethacrylate) monolithic precursor. Part II. Carbodiimide assisted post-polymerization modification with tris and d-Glucamine for use in hydrophilic interaction capillary liquid chromatography, Journal of Liquid Chromatography R T 41 (2018) 684-691.
[11] Z. Dastjerdi, E.D. Cranston, M.A. Dube, Pressure sensitive adhesive property modification using cellulose nanocrystals, International Journal of Adhesives and Adhesion 81 (2018) 36-42.
[12] N.M. Girouard, S. Xu, G.T. Schueneman, M.L. Shofner, J.C. Meredith, Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites, ACS Applied Materials & Interfaces 8 (2016) 1458-1467.
[13] A. Alanis, J.H. Valdes, N.-V. Maria Guadalupe, R. Lopez, R. Mendoza, A.P. Mathew, R. Diaz de Leon, L. Valencia, Plasma surface-modification of cellulose nanocrystals: a green alternative towards mechanical reinforcement of ABS, RSC Advances 9 (2019) 17417-17424.
[14] B. Poaty, V. Vardanyan, L. Wilczak, G. Chauve, B. Riedl, Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings, Progress in Organic Coating 77 (2014) 813-820.
[15] J. Yang, C.-R. Han, J.-F. Duan, F. Xu, R.-C. Sun, Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels, ACS Applied Materials & Interfaces 5 (2013) 3199-3207.
[16] Q. Wu, J. Xu, Z. Wu, S. Zhu, Y. Gao, C. Shi, The effect of surface modification on chemical and crystalline structure of the cellulose III nanocrystals, Carbohydrate Polymers 235 (2020) 115962.
[17] V. Khoshkava, M.R. Kamal, Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites, Powder Technology 261 (2014) 288-298.
[18] H. Seok, D.S. Kim, Preparation and mechanical properties of green epoxy nanocomposites with cellulose nanocrystals, Polymer Engineering & Science 60 (2020) 439-445.
[19] A. Salama, N. Shukry, M. El-Sakhawy, Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal, International Journal of Biological Macromolecule 73 (2015) 72-75.
[20] A.K. Tripathi, J. Vossoughi, D.C. Sundberg, Partitioning of 2-carboxyethyl acrylate between water and vinyl monomer phases applied to emulsion polymerization: comparisons with hydroxy acrylate and other vinyl acid functional monomers, Industrial and Engineering Chemical Research 54 (2015) 2447-2452.
[21] M.-S. Kim, Y.-J. Choi, I. Noh, G. Tae, Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate, Journal of Biomedical Material Research A 83A (2007) 674-682.
[22] M. Rincon-Iglesias, E. Lizundia, D.M. Correia, C.M. Costa, S. Lanceros-Mendez, The role of CNC surface modification on the structural, thermal and electrical properties of poly(vinylidene fluoride) nanocomposites, Cellulose 27 (2020) 3821-3834.
[23] D. Yang, X. Peng, L. Zhong, X. Cao, W. Chen, S. Wang, C. Liu, R. Sun, Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals, RSC Advances 5 (2015) 13878-13885.
[24] E. Abraham, D. Kam, Y. Nevo, R. Slattegard, A. Rivkin, S. Lapidot, O. Shoseyov, Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites, ACS Applied Materials & Interfaces 8 (2016) 28086-28095.
[25] N.H.A. Rahman, B.W. Chieng, N.A. Ibrahim, N.A. Rahman, Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers, Polymers-Basel 9 (2017) 1-11.
[26] W.T. Wulandari, A. Rochliadi, I.M. Arcana, Iop, Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse, 10th Joint Conference on Chemistry, IOP Publishing Ltd, Bristol, 2016. 1-11.
[27] Q.L. Lu, X.Y. Li, L.R. Tang, B.L. Lu, B. Huang, One-pot tandem reactions for the preparation of esterified cellulose nanocrystals with 4-dimethylaminopyridine as a catalyst, RSC Advances 5 (2015) 56198-56204.
[28] T. Aziz, H. Fan, X.W. Zhang, F.U. Khan, Synergistic impact of cellulose nanocrystals and calcium sulfate fillers on adhesion behavior of epoxy resin, Material Research Express 6 (2019) 1-11.
[29] S. Qin, Y. Hu, X. Tian, Y. Tian, W. Liu, L. Zhao, Modification of cellulose nanocrystals by self-assembly nucleation agents to improve poly(L-lactide) nanocomposite’ properties, Cellulose 27 (2020) 4337-4353.
[30] R.D. Roeder, O. Garcia-Valdez, R.A. Whitney, P. Champagne, M.F. Cunningham, Graft modification of cellulose nanocrystals via nitroxide-mediated polymerisation, Polym Chem-Uk 7(41) (2016) 6383-6390.
[31] A. Kumar, Y.S. Negi, V. Choudhary, N.K. Bhardwaj, Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste, Journal of Materials Physics and Chemistry 2 (2014) 1-8.
[32] J. Gong, J. Li, J. Xu, Z. Xiang, L. Mo, Research on cellulose nanocrystals produced from cellulose sources with various polymorphs, RSC Advances 7 (2017) 33486-33493.
[33] H. Zhao, J.H. Kwak, Z. Conrad Zhang, H.M. Brown, B.W. Arey, J.E. Holladay, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis, Carbohydrate Polymers 68 (2007) 235-241.
[34] X.Y. Tan, S.B. Abd Hamid, C.W. Lai, Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis, Biomass and Bioenergy 81 (2015) 584-591.
[35] M.R.K. Sofla, R.J. Brown, T. Tsuzuki, T.J. Rainey, A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods, Advances in Natural Sciences: Nanoscience and Nanotechnology 7 (2016) 035004.
[36] D. Morantes, E. Munoz, D. Kam, O. Shoseyov, Highly charged cellulose nanocrystals applied as a water treatment flocculant, Nanomaterials-Basel 9 (2019) 1-13.
[37] H.A. Al-Turaif, Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose, Progress in Organic Coatings 76 (2013) 477-481.
[38] J.A.M. Ferreira, P.N.B. Reis, J.D.M. Costa, C. Capela, Assessment of the mechanical properties of nanoclays enhanced low Tg epoxy resins, Fibers and Polymers 15 (2014) 1677-1684.
[39] I.F. Pinheiro, F.V. Ferreira, D.H.S. Souza, R.F. Gouveia, L.M.F. Lona, A.R. Morales, L.H.I. Mei, Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals, Europen Polymer Journal 97 (2017) 356-365.
[40] C.W. Irvin, C.C. Satam, J. Carson Meredith, M.L. Shofner, Mechanical reinforcement and thermal properties of PVA tricomponent nanocomposites with chitin nanofibers and cellulose nanocrystals, Composites Part A: Applied Science and Manufacturing 116 (2019) 147-157.
[41] Z. Dastjerdi, E.D. Cranston, M.A. Dubé, Pressure sensitive adhesive property modification using cellulose nanocrystals, International Journal of Adhesion and Adhesives 81 (2018) 36-42.