1. Mhetras, N., Mapare, V., & Gokhale, D. (2021). Cold active lipases: biocatalytic tools for greener technology. Applied Biochemistry and Biotechnology, 193, 2245–2266. https://doi.org/10.1007/s12010-021-03516-w
2. Baloch, K. A., Upaichit, A., & Cheirsilp, B. (2021). Multilayered nano-entrapment of lipase through organic-inorganic hybrid formation and the application in cost-effective biodiesel production. Applied Biochemistry and Biotechnology, 193, 165–187. https://doi.org/10.1007/s12010-020-03404-9
3. Bhan, C., & Singh, J. (2020). Role of microbial lipases in transesterification process for biodiesel production. Environmental Sustainability, 3, 257–266. https://doi.org/10.1007/s42398-020-00119-9
4. Benjamin, S., Fisher, S. J., & Michele C. (2015). Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation. Journal of Lipid Research, 56, 2348–2358. https://doi.org/10.1194/jlr.M063388
5. Heidi, H., Stefan, E., Simone, W., Helmut, K., Ulrich, S., Martin, M., & Marco, B. (2018). Comparison of Candida antarctica lipase B variants for conversion of ε-caprolactone in aqueous medium—part 2. Polymers, 10, 524. https://doi.org/10.3390/polym10050524
6. Lotti, M., Pleiss, J., Valero, F., & Ferrer, P. (2015). Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. Biotechnology Journal, 10, 22–30. https://doi.org/10.1002/biot.201400158
7. Malekabadi, S., Badoei-dalfard, A., & Karami, Z. (2018). Biochemical characterization of a novel cold-active, halophilic and organic solvent-tolerant lipase from B. licheniformis KM12 with potential application for biodiesel production. International Journal of Biological Macromolecules, 109, 389–398. https://doi.org/10.1016/j.ijbiomac.2017.11.173
8. Park, S. H., Kim, S., Park, S., & Kim, H. K. (2019). Characterization of organic solvent-tolerant lipolytic enzyme from Marinobacter lipolyticus isolated from the antarctic ocean. Applied Biochemistry and Biotechnology, 187, 1046–1060. https://doi.org/10.1007/s12010-018-2865-5
9. Syal, P., Verma, V. V., & Gupta, R. (2017). Targeted mutations and MD simulations of a methanol-stable lipaseYLIP9 from Yarrowia lipolytica MSR80 to develop a biodiesel enzyme. International Journal of Biological Macromolecules, 104, 78–88. https://doi.org/10.1016/j.ijbiomac.2017.06.003
10. Gupta, S., Mazumder, P. B., Scott, D., & Ashokkumar, M. (2020). Ultrasound-assisted production of biodiesel using engineered methanol tolerant Proteus vulgaris lipase immobilized on functionalized polysulfone beads. Ultrasonics Sonochemistry, 68, 105211. https://doi.org/10.1016/j.ultsonch.2020.105211
11. Tian, K., Tai, K., Chua, B. J. W., & Li, Z. (2017). Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease. Bioresource Technology, 245, 1491–1497. https://doi.org/10.1016/j.biortech.2017.05.108
12. Zheng, R. C., Ruan, L. T., Ma, H. Y., Tang, X. L., & Zheng, Y. G. (2016). Enhanced activity of Thermomyces lanuginosus lipase by site-saturation mutagenesis for efficient biosynthesis of chiral intermediate of pregabalin. Biochemical Engineering Journal, 113, 12–18. https://doi.org/10.1016/j.bej.2016.05.007
13. Liu, C. Y., Severin, L. C., Lyu, C. J., Zhu, W. L., Wang, H. P., Jiang, C. J., Mei, L. H., Liu, H. G., & Huang, J. (2021). Improving thermostability of (R)-selective amine transaminase from Aspergillus terreus by evolutionary coupling saturation mutagenesis. Biochemical Engineering Journal, 167, 107926. https://doi.org/10.1016/j.bej.2021.107926
14. Li, X., Sun, J., Wang, W., Guo, J., Song, K., & Hao, J. (2020). Site-saturation mutagenesis of proline 176 in Cyclodextrin Glucosyltransferase from Bacillus sp. Y112 effects product specificity and enzymatic properties. Process Biochemistry, 94, 180–189. https://doi.org/10.1016/j.procbio.2020.04.024
15. Hu, B. C., Li, C., Wang, R., Zong, X. C., Li, J. P., Li, J. F., & Wu, M. C. (2018). Improvement in the activity and enantioconvergency of PvEH3, an epoxide hydrolase from Phaseolus vulgaris, for p-chlorostyrene oxide by site-saturation mutagenesis. Catalysis Communications, 117, 9–13. https://doi.org/10.1016/j.catcom.2018.08.019
16. Brito e Cunha, D. A., Bartkevihi, L., Robert, J. M., Cipolatti, E. P., Ferreira, A. T. S., Oliveira, D. M. P., Gomes-Neto, F., Al meida, R. V., Fernandez-Lafuente, R., Freire, D. M. G., & Anoboma, C. D. (2019). Structural differences of commercial and recombinant lipase B from Candida antarctica: an important implication on enzymes thermostability. International Journal of Biological Macromolecules, 140, 761–770. https://doi.org/10.1016/j.ijbiomac.2019.08.148
17. Yagonia, C. F. J., Park, H. J., Hong, S. Y., & Yoo, Y. J. (2015). Simultaneous improvements in the activity and stability of Candida antarctica lipase B through multiple-site mutagenesis. Biotechnology and Bioprocess Engineering, 20, 218–224. https://doi.org/10.1007/s12257-014-0706-0
18. Montanier, C. Y., Chabot, N., Emond, S., Guieysse, D., Remaud-Siméon, M., Peruch, F., & André, I. (2017). Engineering of Candida antarctica lipase B for poly(ε-caprolactone.) synthesis. European Polymer Journal, 95, 809–819. https://doi.org/10.1016/j.eurpolymj.2017.07.029
19. Xie, Y., An, J., Yang, G., Wu, G., Zhang, Y., Cui, L., & Feng, Y. (2014). Enhanced enzyme kinetic stability by increasing rigidity within the active site. Journal of Biological Chemistry, 289, 7994–8006. https://doi.org/10.1074/jbc.M113.536045
20. Strzelczyk, P., Bujacz, G. D., Kiełbasiński, P., & Błaszczyk, J. (2016). Crystal and molecular structure of hexagonal form of lipase B from Candida antarctica. Acta Biochimica Polonica, 63, 103–109. https://doi.org/10.18388/abp.2015_1065
21. Uppenberg, J., Hansen, M. T., Patkar, S., & Jones, T. A. (1994). The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure, 2, 293–308. https://doi.org/10.1016/S0969-2126(00)00031-9
22. Hassan, Z. U., Thani, R. A., Alsafran, M., Migheli, Q., & Jaoua, S. (2021). Selection of Bacillus spp. with decontamination potential on multiple Fusarium mycotoxins. Food Control, 127, 108119. https://doi.org/10.1016/j.foodcont.2021.108119
23. Watanabe, S., Ito, M., & Kigawa, T. (2021). DiRect: site-directed mutagenesis method for protein engineering by rational design. Biochemical and Biophysical Research Communications, 551, 107–113. https://doi.org/10.1016/j.bbrc.2021.03.021
24. Tan, Z., Li, J., Wu, M., Tang, C., Zhang, H., & Wang, J. (2011). High-level heterologous expression of an alkaline lipase gene from Penicillium cyclopium PG37 in Pichia pastoris. World Journal of Microbiology and Biotechnology, 27, 2767–2774. https://doi.org/10.1007/s11274-011-0752-0
25. Wu, M., Sun, C., & Wu, X. (2000). Diffusion plate assay for quick and rough estimation of alkaline lipase activity. Journal of Wuxi University of Light Industry, 19, 168–172.
26. Li, X., Xia, J., Zhu, X., Bilal, M., Tan, Z., & Shi, H. (2019). Construction and characterization of bifunctional cellulases: Caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose. Biochemical Engineering Journal, 151, 107363. https://doi.org/10.1016/j.bej.2019.107363
27. Tan, Z., Li, J., Li, X., Gu, Y., Wu, M., Wu, J., & Wang, J. (2014). A unique mono- and diacylglycerol lipase from Penicillium cyclopium: heterologous expression, biochemical characterization and molecular basis for its substrate selectivity. PLoS One, 9, e102040. https://doi.org/10.1371/journal.pone.0102040
28. Quayson, E., Amoah, J., Rachmadona, N., Morita, K., Darkwah, L., Hama, S., Yoshida, A., Kondo, A., & Ogino, C. (2020). Valorization of palm biomass waste into carbon matrices for the immobilization of recombinant Fusarium heterosporum lipase towards palm biodiesel synthesis. Biomass and Bioenergy, 142, 105768. https://doi.org/10.1016/j.biombioe.2020.105768
29. Li, J., Zhang, J., Shen, S., Zhang, B., & Yu, W. W. (2020). Magnetic responsive Thermomyces lanuginosus lipase for biodiesel synthesis. Materials Today Communications, 24, 101197. https://doi.org/10.1016/j.mtcomm.2020.101197
30. Yodsuwan, N., Kamonpatana, P., Chisti, Y., & Sirisansaneeyakul, S. (2018). Ohmic heating pretreatment of algal slurry for production of biodiesel. Journal of Biotechnology, 267, 71–78. https://doi.org/10.1016/j.jbiotec.2017.12.022
31. Duan, M., Huang, M., Ma, C., Li, L., & Zhou, Y. (2010). Position-specific residue preference features around the ends of helices and strands and a novel strategy for the prediction of secondary structures. Protein Science, 17, 1505–1512. https://doi.org/10.1110/ps.035691.108
32. Long, S., Zhang, X., Rao, Z., Chen, K., Xu, M., Yang, T., & Yang, S. (2016). Amino acid residues adjacent to the catalytic cavity of tetramer L-asparaginase II contribute significantly to its catalytic efficiency and thermostability. Enzyme and Microbial Technology, 82, 15–22. https://doi.org/10.1016/j.enzmictec.2015.08.009
33. Reetz, M. T. (2006). Directed evolution of enantioselective enzymes as catalysts for organic synthesis. Advances in Catalysis, 49, 1–69. https://doi.org/10.1002/chin.200622279
34. Boehlein, S. K., Shaw, J. R., Stewart, J. D., Sullivan, B., & Hannah, L. C. (2015). Enhancing the heat stability and kinetic parameters of the maize endosperm ADP-glucose pyrophosphorylase using iterative saturation mutagenesis. Archives of Biochemistry and Biophysics, 568, 28–37. https://doi.org/10.1016/j.abb.2015.01.008
35. Larsen, M. W., Bornscheuer, U. T., & Hult, K. (2008). Expression of Candida antarctica lipase B in Pichia pastoris and various Escherichia coli systems. Protein Expression and Purification, 62, 90–97. https://doi.org/10.1016/j.pep.2008.07.012
36. Tassel, L. V., Moilanen, A., & Ruddock, L. W. (2020). Efficient production of wild-type lipase B from Candida antarctica in the cytoplasm of Escherichia coli. Protein Expression and Purification, 165, 105498. https://doi.org/10.1016/j.pep.2019.105498
37. Endo, Y., Hatanaka, T., Maeda, K., Arafune, K., Yamamoto, T., Itoh, K., Kuramochi, H., Kashino, Y., & Ifuku, K. (2018). Use of ethanol with triolein for fatty acid ethyl ester as biodiesel fuel in a Novozym® 435 fixed-bed reactor. Biomass and Bioenergy, 108, 433–438. https://doi.org/10.1016/j.biombioe.2017.11.023
38. Kulschewski, T., Sasso, F., Secundo, F., Lotti, M., & Pleiss, J. (2013). Molecular mechanism of deactivation of C. antarctica lipase B by methanol. Journal of Biotechnology, 168, 462–469. https://doi.org/10.1016/j.jbiotec.2013.10.012
39. Adachi, D., Hama, S., Nakashima, K., Bogaki, T., Ogino, C., & Kondo, A. (2013). Production of biodiesel from plant oil hydrolysates using an Aspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B. Bioresource Technology, 135, 410–416. https://doi.org/10.1016/j.biortech.2012.06.092
40. Bencze, L. C., Bartha-Vári, J. H., Katona, G., Toşa, M. I., Paizs, C., & Irimie, F. D. (2016). Nanobioconjugates of Candida antarctica lipase B and single-walled carbon nanotubes in biodiesel production. Bioresource Technology, 200, 853–860. https://doi.org/10.1016/j.biortech.2015.10.072
41. Samukawa, T., Kaieda, M., Matsumoto, T., Ban, K., Kondo, A., Shimada, Y., Noda, H., & Fukuda, H. (2000). Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. Journal of Bioscience and Bioengineering, 90, 180–183. https://doi.org/10.1016/S1389-1723(00)80107-3
42. Lee, J. H., Kwon, C. H., Kang, J. W., Park, C., Tae, B., & Kim, S. W. (2009). Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method. Applied Biochemistry and Biotechnology, 156, 454–464. https://doi.org/10.1007/s12010-008-8488-5
43. Shahedi, M., Habibi, Z., Yousefi, M., Brask, J., & Mohammadi, M. (2021). Improvement of biodiesel production from palm oil by co-immobilization of Thermomyces lanuginosa lipase and Candida antarctica lipase B: optimization using response surface methodology. International Journal of Biological Macromolecules, 170, 490–502. https://doi.org/10.1016/j.ijbiomac.2020.12.181
44. Shahedi, M., Yousefi, M., Habibi, Z., Mohammadi, M., & As'habi, M. A. (2019). Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology. Renewable Energy, 141, 847–857. https://doi.org/10.1016/j.renene.2019.04.042
45. Pace, C. N., Fu, H., Fryar, K. L., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., & Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science, 23, 652–661. https://doi.org/10.1002/pro.2449
46. Korman, T. P., Sahachartsiri, B., Charbonneau, D. M., Huang, G. L., Beauregard, M., & Bowie, J. U. (2013). Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnology for Biofuels, 6, 70. https://doi.org/10.1186/1754-6834-6-70
47. Dror, A., Kanteev, M., Kagan, I., Gihaz, S., Shahar, A., & Fishman, A. (2015). Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus. Applied Microbiology and Biotechnology, 99, 9449–9461. https://doi.org/10.1007/s00253-015-6700-4