The study was conducted in Sélingué, a commune in the southern part of Mali in the Sikasso region (140 km northwest of Bamako; Fig. 1), where malaria transmission is high due to a relatively long rainy season and the presence of a lake formed by a hydroelectric dam on the Sankarani River. In 2011, malaria parasite prevalence was 42.7% in children aged five to nine years in Sélingué [10]. Malaria incidence in this area is highest between September and January.
Thick and thin malaria blood smears were prepared on glass slides and stained with 3% Giemsa (Sigma; St. Louis, MO) in phosphate buffer (pH 7.0). The slide reading was performed by two experienced microscopists at the study sites. If a discrepancy between these two readers exceeded 20%, a third slide read was performed by another senior microscopist and the closest readings averaged for a final parasite count. Parasitemia was estimated according to well-established methods [12].
Sample size estimation:
A total enrollment of 240 patients per arm would provide adequate power to estimate an efficacy of 95% with a confidence interval of ± 5%, assuming an expected efficacy of 95% and a maximum loss to follow-up and withdrawal rate of 20%. This was based on the ability of the drug to clear parasitemia at day 7 or before.
Clinical monitoring: Each enrolled child received a three-day course of either AL (Coartem, Novartis) or ASAQ (ASAQ-Denk, fixed dose, DENK PHARMA, Munchen, Germany). All doses administered were given under the direct observation of the study pharmacist and both AL and ASAQ were given with a peanut-based paste and milk. All children were observed for a minimum of one hour to monitor for vomiting or other side effects. After the three days of dosing, each enrolled child was followed on days 7, 14, 21, 28, 35, and 42. During each visit, the following were performed or collected: physical exam (weight, height), temperature, thin and thick blood smears, and dried blood spots. Hemoglobin levels were measured at the time of enrollment and on day 42, at the completion of the study. In cases of recurrent parasitemia, quinine was administered according to the guidelines of the Mali National Malaria Control Program.
Study outcome classification: Treatment responses were classified following the WHO guidelines [11]. Treatment outcomes were classified as either early treatment failure (ETF: day 2 count higher than pre-treatment; or day 3 count ≥ 25% of count on pre-treatment), late clinical failure, late parasitological failure, or adequate clinical and parasitological response (ACPR) as per WHO definitions [3], before and after PCR correction. Children experiencing ETF without danger signs or severe malaria were not offered retreatment. However, children meeting criteria for ETF were not included in the numerator (i.e., as treatment successes) when calculating ACPR.
Molecular analysis
Genotyping using the merozoite surface proteins 1 and 2 (msp1 and msp2), and glutamine-rich protein (glurp) markers, and Sanger sequencing of P. falciparum parasites were performed on samples obtained from participants on enrollment day (pre-treatment) and on the day of recurrent parasitemia (post-treatment). Genomic DNA was extracted from all collected samples using the QiAamp mini kit (Qiagen, Valencia, CA USA) following the manufacturer’s instructions. Primers designed to amplify three allelic families from block 2 of msp1 (K1, MAD20 and RO33), two allelic families from msp2 (FC27 and IC/3D7), and the polymorphic region of glurp were used in PCR amplification and analysis as previously described [13, 14]. Band sizes were scored using an automated Gel Image system (UVP, Upland, CA, USA) and compared across the three markers for paired pre-treatment and day of recurrence samples. For msp1 and msp2, bands with lengths within 10 base pairs were considered a match; for glurp, lengths within 50 base pairs were considered a match. If there was at least one matching band in any allelic family for all three markers, the recurrence was classified as a recrudescence (regardless of whether there were additional or missing alleles). If there were no shared alleles for at least one marker, the recurrence was classified as a reinfection. If there were no amplification products resulting in sharp, defined bands in both the pre-treatment and day of recurrence samples for a gene, that gene was not used to distinguish between recrudescence and reinfection, but the aforementioned classification criteria were applied for the genes that were amplified.
Paired pre-treatment and day of recurrent parasitemia samples were assessed for known markers of resistance in the Pfcrt, Pfk13, and Pfmdr1 genes. In addition, all pre-treatment samples were assessed for mutations in the Pfk13 and pfmdr1 genes. Fragments of Pfk13, Pfcrt, and Pfmdr1 were amplified by nested PCR using previously published primers [15, 16]. Direct Sanger sequencing of the nested purified PCR products was performed by using a BigDye Terminator v3.1 cycle sequencing kit on an iCycler thermal cycler (Bio-Rad, California, USA). Sequence analysis was performed using Geneouis R7 (Biomatters, Auckland, New Zealand). The Pfcrt codons 72, 74, 75, and 76, Pfk13 propeller domain (codon positions: 440–600), and Pfmdr1 codons 86, 184, and 1246 were analyzed for single nucleotide polymorphisms (SNPs). The P. falciparum lab strain 3D7 Pfcrt, Pfk13, and Pfmdr1 were used as reference sequences for the analysis. Molecular analyses were performed in collaboration with the U.S. Centers for Disease Control and Prevention (CDC) Malaria Laboratory in Atlanta, USA, as part of the President’s Malaria Initiative (PMI)-supported Antimalarial Resistance Monitoring in Africa Network [17].
Statistical analysis
Treatment responses were classified following the WHO guidelines [11]. Uncorrected efficacy rates were calculated by dividing the number of participants with an ACPR in each arm by the total number of participants. For the PCR-corrected efficacy, per the WHO protocol, new infections identified during follow-up were not considered as treatment successes or failures and were excluded from the corrected estimations of treatment efficacy [11]. Therefore, patients were censored or excluded from the PCR-corrected analyses if the PCR results indicated that the failure was due to reinfection with P. falciparum. Uncorrected and PCR-corrected ACPR for AL and ASAQ were compared at both day 28 and 42 using a chi-square test. The capacity of the two ACTs to clear parasites by day 7 and the post-treatment prophylactic effect of the two treatments was evaluated using a previously described approach by Koita [18]. This approach involved comparing clinical cure rates, a composite of clearance of asexual parasites and fever by day 7. We assessed the post-treatment prophylactic effects of the ACTs by including new infections in the denominator of the uncorrected efficacy estimations. Kaplan Meier estimates were calculated for the uncorrected efficacy, the PCR-corrected efficacy for risk of recrudescence (per WHO guidelines [11]), and the PCR-corrected efficacy for reinfections only (using an approach described in [18]. ). Corresponding survival curves and hazard ratios comparing AL and ASAQ were also generated.
Point mutations in the Pfk13, Pfmdr1, and Pfcrt genes were reported as single or mixed (wild-type and mutant) infections. For samples with mixed infections and SNP variations at multiple sites, each possible haplotype constructed from the observed SNPs was reported for Pfmdr1. In reporting Pfcrt haplotypes in samples with a mixed infection and SNP variations at multiple sites, the wild-type (CVMNK) and most likely mutant type (e.g., CVIET) were reported. The prevalence of the Pfmdr1 mutant alleles and haplotypes was calculated stratifying by the treatment arms (AL and ASAQ) and compared between the pre-treatment samples (samples with ACPR and samples from subjects that later had reinfections) and post-treatment samples (reinfections and recrudescent infections). Likewise, the prevalence of the Pfcrt mutant alleles and haplotypes was compared between pre-treatment and post-treatment samples in the ASAQ arm. For these analyses, pre-treatment samples from participants with recrudescent infections were excluded. Differences between pre-treatment and post-treatment samples were assessed using Fisher’s Exact test. The prevalence of wild type versus mutant alleles were compared between groups (e.g., Pfmdr1 N86 versus 86Y). Mixed infections were excluded. To compare haplotypes, the sum of samples with the predominant haplotype was compared to the sum of those without that haplotype (e.g., Pfmdr1 haplotype NFD versus all other haplotypes). Statistical significance was defined as p < 0.05 for all statistical tests. Analyses were performed using Graph Pad Prism version 6.00 for Windows (Graph Pad Software, La Jolla, California, USA) and R (R Foundation for Statistical Computing, Vienna, Austria).
Ethical considerations
Ethical review and approval was obtained from the Internal Review Board of the Institut National de Recherche en Santé Publique (INRSP, Ministry of Health and Public Hygiene, FWA 00000892). Work performed at the Centers for Disease Control and Prevention was deemed to not constitute engagement in human subject research (CDC, Atlanta, USA; CGH tracking #2016-012). Parents or guardians of study participants were asked to provide written informed consent.