Chemicals, reagents and bacterial strains
Luria-bertani (LB), mueller hinton agar (MHA), mueller hinton broth (MHB); cation-adjusted mueller hinton broth (CA-MHB), nutrient broth (NB), trypticase soy broth (TSB), and agar were purchased from Becton Dickinson and Company (Becton Drive, NJ, United States), and sodium chloride and glucose were obtained from Scharlab (Barcelona, Spain). All these microbiological media were prepared before use by following manufacturer’s instructions. Quality control strain (ATCC 14028) and clinical strains (V08-S-HA-06-170, V15-S-HA-02-210, SAL 109, SAL 202 and SAL 224) of S. Typhimurium were used in this study. These clinical strains were obtained from farms of different regions in the Republic of Korea. Clinical isolated strains V08-S-HA-06-170 and SAL 109 were from feces of cattle, V15-S-HA-02-210 and SAL 202 were from feces of chicken and SAL 224 was from carcass of chicken. Isolation, identification and antibiotic sensitivity pattern of these clinical strains were carried out based on previously reported methods [44]. Considering the antibiotic sensitivity patterns, the clinical strains V08-S-HA-06-170 and V15-S-HA-02-210 were characterized as intermediate resistant, and SAL 109, SAL 202 and SAL 224 were identified as resistant. All the strains were cultivated in MHB for 20 h in a rotating incubator at 200 rpm and 37 °C. Antibiotics used in this study include amoxicillin, ampicillin, cefotaxime, ceftiofur, erythromycin, florfenicol, marbofloxacin, norfloxacin, penicillin G and thiamphenicol. GA, epicatechin, epicatechin gallate, epigallocatechin and hamamelitannin were utilized as antibacterial agents in this study. All the chemicals, reagents and media were from Sigma-Aldrich (St. Louis, MO, United States) unless otherwise mentioned. Stock solutions of epicatechin, epicatechin gallate and epigallocatechin were prepared by dissolving in water. Slight heat and sonication was applied to dissolve epicatechin gallate in water. Alcohol was used as co-solvent to dissolve GA and hamamelitannin in preparing stock solutions. All these stock solutions were further diluted to respective media (e.g., MHB, TSB, etc.) before using in experiment. Solvent controls were used where it was required. Respective growth media (e.g., MHB, TSB, etc.) were used as control medium in the combination experiment, unless mentioned otherwise.
Minimum inhibition concentrations of antibacterial agents
MICs of above mentioned commercial antibiotics and opportunistic antibacterial agents were determined by the standard broth microdilution method according to the clinical and laboratory standard institute (CLSI) guidelines in CA-MHB using an inoculum concentration of 5 × 105 CFU/mL [45]. Different antibacterial solutions were serially diluted in 96-well plates in 100 μL volumes. The starting concentrations of amoxicillin, ampicillin, cefotaxime, ceftiofur, erythromycin, florfenicol, marbofloxacin, norfloxacin, penicillin G, thiamphenicol, epicatechin, epicatechin gallate, epigallocatechin, gallic acid and hamamelitannin against all the tested strains after inoculating bacteria were 512, 1024, 1024, 512, 2048, 512, 32, 32, 1024, 2048, 1024, 512, 1024, 1024 and 2048 µg/mL, respectively. The cultures of different bacterial strains were diluted to adjust 0.5 McFarland units and, again diluted 100-times. Hundred microliter of this diluted bacterial suspension was dispensed to all the wells of 96-well plates which contain 100 μL of antibacterial solution. After incubation at 35 °C for 18 h, the turbidity in each well was checked. The lowest concentrations of the antibacterial that completely inhibited the increase in turbidity were considered as MICs.
Fractional inhibition concentration index of antibacterial agents
A slightly modified version of the previously described checkerboard microdilution method was utilized to determine the combination interactions of the commercial antibiotics and phenolic compounds [46]. One antibacterial agent was vertically diluted and the other antibacterial was horizontally diluted in 96-well plates to achieve a matrix of different combinations of the 2 antibacterials. Starting concentrations of these antibacterial agents were same as mentioned in ‘Minimum inhibition concentrations of antibacterial agents’ section. Similar dilutions of individual drugs and the drug-free medium control were included in each test plate. S. Typhimurium culture in early log phase was diluted and 100 μL of the diluted bacterial suspension was added to each well of the 96-well plates, where the final inoculum concentration after transferring to each well would be 5 × 105 CFU/mL. Plated bacteria were incubated at 35 °C for 18 h. The fractional inhibitory concentration (FIC) and the FICI were calculated from the MICs of the drugs alone and in combination. The FIC is the MIC of a drug in presence of another drug divided by the MIC of the individual drug, and the FICI is the sum of the FICs of the individual drugs. An FICI of ≤ 0.5 is regarded as synergistic, 0.5 < FICI ≤ 1 is considered additive, 1 < FICI ≤ 2 is considered indifferent, and an FICI > 2 is considered antagonistic effects [47].
Effect of antibacterial combinations on bacterial inhibition rates
The time- and concentration-dependent inhibition effects of GA-ceftiofur combination against S. Typhimurium were evaluated according to a previously reported method [14]. Effects of GA (1×MIC), ceftiofur (1×MIC), GA (1×MIC) + ceftiofur (1×MIC), GA (½×MIC) + ceftiofur (½×MIC), and GA (¼×MIC) + ceftiofur (¼×MIC) against S. Typhimurium were analysed. Drug compounds alone and in combination were supplemented in 10 mL MHB broth in 15 mL falcon tubes. Bacterial cultures in early log phase were diluted and then re-suspended in the drug-supplemented broth to a final inoculum concentration of 5 × 105 CFU/mL. A tube containing 5 × 105 CFU/mL of bacteria in 10 mL MHB without any drug was used as a control. The samples were incubated at 37 °C and 200 rpm in a shaking incubator. At different time points (0, 1, 2, 3, 4, 6, 8, 12, and 24 h) 100 μL of the cultures were collected from all tubes and serially diluted 10-fold in agar saline. Aliquots of the 10-fold dilutions (20 μL) were spread on MHA plates and incubated overnight at 37 °C. The CFUs of the cultures were determined by counting the number of colonies from each dilution. The mean log10 CFU/mL for each compound was plotted against different times.
Effect of antibacterial combinations on bacterial cell morphology
The effects of the GA-ceftiofur combination on the morphology of S. Typhimurium cells were evaluated. Drug compounds alone or in combination were supplemented into 10 mL of MHB broth in 15 mL falcon tubes. The concentrations of antibacterials used in this assay are same as mentioned in ‘Effect of antibacterial combinations on bacterial inhibition rates’ section. Bacterial cultures in early log phase were diluted and then re-suspended in the drug-supplemented broth to a final inoculum concentration of 5 × 105 CFU/mL. A tube containing 5 × 105 CFU/mL of bacteria in 10 mL MHB without any drug was used as a control. The bacteria in tubes were incubated overnight at 37 °C and 200 rpm in a shaking incubator. Then, the cells were harvested, washed, and dehydrated according to a previously reported protocol [48]. The ultrastructural morphology of treated S. Typhimurium cells was studied using a SEM (models S-4300 and EDX-350; Hitachi, Japan).
Effect of antibacterial combinations on biofilm growth and viability
The inhibitory effect of combination antibacterials on biofilm formation was determined using slightly modified version of previously reported spectrophotometric methods [49, 50]. Briefly, test compounds were supplemented into TSB in three separate wells of a 96-well microplate for each concentration. The concentrations of antibacterials used in this assay are same as mentioned in ‘Effect of antibacterial combinations on bacterial inhibition rates’ section. Culture of S. Typhimurium was incubated for 18 h in a rotating incubator at 200 rpm and 37 °C. The bacterial culture was diluted in TSB, and then 100 μL of the diluted culture was added to the designated wells to a final cell density of 5 × 105 CFU/mL after inoculation. The optical densities (ODs) of the bacteria in the wells of a 96-well plate were measured at 600 nm instantly after inoculating bacteria. The bacteria in the 96-well plate with drugs were incubated for 24 h at 37 °C, and after incubation, the ODs were again measured to determine the growth of planktonic cells. Then the supernatants from the wells of a 96-well plate were discarded carefully without affecting the biofilms which are attached on the well-surfaces. The adherent media and drug components were removed by washing the wells three-times with sterile phosphate buffered saline (PBS, pH 7.2). Then, 200 μL of methanol (99%, v/v) were dispensed to the wells, and kept for 20 min to fix the biofilms. The biofilms were then stained by introducing 100 μL of crystal violet (0.2%, w/v) solution to the wells and keeping at room temperature for 15 min. The excess or unbound crystal violet in the wells was removed by four-times washing with PBS. The crystal violet on the biofilm cells was extracted in 100 μL of 95% ethanol, and their ODs were measured, which yields a measure of biofilm formation (compared to the control). Measurements were performed in triplicate and repeated 3 times.
Slightly modifying previously reported biofilm viability assay method was utilized to evaluate the effects of combination drugs on the viability of the biofilms produced by S. Typhimurium [16, 51]. In brief, sterile TSB broth of 2 mL were transferred to a Nunc™ Lab-Tek™ II Chambered Cover glass (ThermoFisher Scientific, Waltham, MA, United States), and diluted culture of S. Typhimurium inoculated into the broth to a final concentration of 5 × 105 CFU/mL. The Nunc™ Lab-Tek™ II Chambered Cover glass which contain S. Typhimurium cells were kept in an incubator without any agitation at 37 °C until 48 h for biofilm formation. Every 24 h, the TSB broth used in biofilm formation was replaced by fresh, sterile TSB broth without affecting the bacterial cells. The supernatants and planktonic cells were discarded after incubating the bacteria for 48 h, and the chambered cover glasses were washed by 1×PBS. Then, 2 mL of sterile TSB containing GA (½×MIC), ceftiofur (½×MIC), and GA (½×MIC) + ceftiofur (½×MIC) were separately added to Nunc™ Lab-Tek™ II Chambered Cover glass for treating the biofilms of S. Typhimurium. Then biofilm and drug containing Nunc™ Lab-Tek™ II Chambered Cover glasses were again kept in an incubator at 37 °C for 24 h to treat the developed-biofilm cells. After 24 h of exposure to the test compounds, the biofilms were again washed with sterile double distilled water (DDW) and stained with BacLight live/dead stain (ThermoFisher Scientific, Waltham, MA, United States). Untreated biofilm was used as a control. Live/dead staining kits have two stains such as SYTO9 and propidium iodide. When used alone, the SYTO9 stain can cross all bacterial cell membranes facilitating a whole cell count [52]. In contrast, propidium iodide penetrates only bacteria with damaged membranes, causing a reduction in the SYTO9 stain fluorescence when both dyes are present [53]. When both dyes are present, propidium iodide exhibits a stronger affinity for nucleic acids than SYTO9, and hence, SYTO9 is displaced by propidium iodide [53]. Thus, the bacterial biofilm cells stained fluorescent green (SYTO9) have intact membranes and considered to be live cells whereas those cells stained red (propidium iodide) have damaged membranes and considered as dead cells. CLSM was used to scan the viable and nonviable biofilms. Imaging was performed with a ZEISS LSM 700 CLSM (Carl Zeiss, Jena, Germany) using 488 nm laser and 495–550 nm emission filter for SYTO9, and 561 nm laser and 560–600 nm emission filter for propidium iodide. ZEN 5.5 software (Carl Zeiss, Jena, Germany) was used to execute image acquisition as well as subsequent image manipulation. Images were captured randomly from different zones of each cover glass. From each zone of a sample, 6 stacks were acquired. Images were analyzed in IMARIS 9.1 software package (Bitplane, Zurich, Switzerland) for the quantification of biofilm biomass. To do so, the original Zeiss files (CZI format) were imported into the software, and determined the biomasses of live biofilm (SYTO9-stained biofilm) and dead biofilm (propidium iodide-stained biofilm) in different observation fields. The biomass of total biofilm in each test group was the sum of dead biofilm biomass and live biofilm biomass.
Effect of antibacterial combinations on the motility of bacterial cells
The swarming and swimming motilities of S. Typhimurium (ATCC 14028) in the presence of the combination drugs were evaluated according to previously published methods with slight modifications [54]. Nutrient broth supplemented with 0.5% glucose and 0.5% agar was used for the evaluation of S. Typhimurium swarming motility. The media used to evaluate the S. Typhimurium swimming activity was composed of nutrient broth supplemented with 0.5% glucose and 0.25% agar. Ceftiofur (1×MIC), GA (1×MIC), ceftiofur (1×MIC) + GA (1×MIC), and ceftiofur (½×MIC) + GA (½×MIC) were supplemented in different molten agar plates for determining their effects on swimming and swarming motilities of S. Typhimurium. A drug free plate was employed as the negative control. The plates were allowed to dry for 1 h and then 2 μL of S. Typhimurium cultures were inoculated onto the respective swarming and swimming agar plates. Swarm plates were kept at 37 °C for overnight, whereas swim plates were incubated at 37 °C for 10 h. After incubation, the swarm and swim zone diameters were measured using calibrated digital slide callipers (Mitotoyo, Japan), and photographs of the plates were captured.
Cell viability in the presence of antibacterial agents
The in vitro viabilities of Rattus norvegicus small intestine (IEC-6; American Type Culture Collection CRL-1592, VA, United States) cell lines in the presence of GA and ceftiofur alone, and in combination were evaluated according to standard EZ-cytox (EZ-1000; Daeillab Service Co. Ltd., Jeonju, Republic of Korea) assay method. In brief, IEC-6 cells were cultured at 37 °C under a humidified atmosphere of 5% carbon dioxide (CO2) in Dulbecco's Modified Eagle's medium (DMEM; ThermoFisher Scientific, Waltham, MA, United States) with 4 mM L-glutamine (ThermoFisher Scientific, Waltham, MA, United States), adjusted to contain 1.5 g/L sodium bicarbonate (Carolina Biological Supply Company, Burlington, NC, United States) and 4.5 g/L glucose and supplemented with 0.1 Unit/mL bovine insulin (90%) and FBS (10%). The cells were subpassaged at a ratio of 1:5 twice a week. One hundred microliters of suspended cells with the density of 2 × 104 cells/mL were acclimated in 96-well plates at 37 °C under 5% CO2 for 24 h. Then, the medium from each well was aspirated and the cells were washed twice. Separately, the test compounds were serially diluted in cell culture medium to make a concentration range as ceftiofur (500–31) µg/mL, and GA (500–31) µg/mL. One hundred microliters of these serially diluted test compounds (GA and ceftiofur alone and their combination) were dispensed into each well which contained washed cells as mentioned above. The cells in the drug-supplemented medium were allowed to incubate at 37 °C under 5% CO2 for 24 h. A total of 10 µL of EZ-cytox were added to each well. After incubation for 2 h, the absorbances in each well were measured at 450 nm using a plate reader. Cells not treated with any drugs were assigned as the control. The cell viability (%) was calculated by the following formula, and values of cell viability (%) at different drug concentrations were used to determine the IC50:
Cell viability (%) = (OD of drug-treated sample/OD of untreated sample) × 100, where OD is the optical density [55].
Statistical analysis
Results are presented as the means ± standard deviation (SD) of triplicate analysis. Statistical analysis was carried out by using SAS software (SAS Institute Inc., Cary, NC, United States). One-way analysis of variance (ANOVA) followed by F-test was used to compare the results. Statistical significance was considered when the p-value was < 0.05.