Agarwal, R., Awasthi, A., Singh, N., Gupta, P. K., Mittal, S. K., (2012) Effects of exposure to rice-crop residue burning smoke on pulmonary functions and Oxygen Saturation level of human beings in Patiala (India). Science of the Total Environmental429: 161-166.
Banerjee, T., Murari, V., Kumar, M., &Raju, M. P. (2015). Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmospheric Research, 164, 167-187.
Begum, B. A., Kim, E., Biswas, S. K., &Hopke, P. K. (2004).Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh.Atmospheric Environment, 38(19), 3025-3038.
Begum, B. A., Nasiruddin, M., Randall, S., Sivertsen, B., &Hopke, P. K. (2014).Identification and apportionment of sources from air particulate matter at urban environments in Bangladesh.British Journal of Applied Science & Technology, 4 (27), 3930-3955.
Brugge, D., Durant, J. L., &Rioux, C. (2007). Near-highway pollutants in motor vehicle exhaust: a review of epidemiologic evidence of cardiac and pulmonary health risks. Environmental health, 6(1), 23.
Chueinta, W., Hopke, P. K., &Paatero, P. (2000).Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmospheric Environment, 34(20), 3319-3329.
CPCB, 2010. Central pollution control board, air quality monitoring, emission inventory and source apportionment study for Indian cities, National Summary Report the Central Pollution Control Board, New Delhi, India.
Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P. K., Webster, R. D., & Wang, X. (2015). Trace element composition of PM2. 5 and PM10 from Kolkata–a heavily polluted Indian metropolis.Atmospheric Pollution Research, 6(5), 742-750.
Daun, K. J., Sipkens, T. A., Titantah, J. T., & Karttunen, M. (2013). Thermal accommodation coefficients for laser-induced incandescence sizing of metal nanoparticles in monatomic gases. Applied Physics B, 112(3), 409-420.
Delfino, R. J., Staimer, N., Tjoa, T., Gillen, D., Kleinman, M. T., Sioutas, C., & Cooper, D. (2008).Personal and ambient air pollution exposures and lung function decrements in children with asthma.Environmental health perspectives, 116(4), 550-558.
Deshmukh, D. K., Deb, M. K., &Mkoma, S. L. (2013). Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India.Air Quality, Atmosphere & Health, 6(1), 259-276.
Espinosa, A. J. F., Rodrı́guez, M. T., de la Rosa, F. J. B., & Sánchez, J. C. J. (2002). A chemical speciation of trace metals for fine urban particles. Atmospheric Environment, 36(5), 773-780.
Feng, X. D., Dang, Z., Huang, W. L., & Yang, C. (2009). Chemical speciation of fine particle bound trace metals. International Journal of Environmental Science & Technology, 6(3), 337-346.
Friberg, L., Nordberg, G. F., &Vouk, V. B. (1986). Handbook on the toxicology of metals (2nd ed., pp. 5–6). Amsterdam: Elsevier Science and Technology.
Goddard, S. L., Williams, K. R., Robins, C., Butterfield, D. M., & Brown, R. J. (2019). Concentration trends of metals in ambient air in the UK: a review. Environmental monitoring and assessment, 191(11), 1-16.
Guttikunda, S. K., & Mohan, D., (2014). Re-fueling road transport for better air quality in India.Energy Policy, 68, 556-561.
Goyal, R., &Khare, M. (2009). Indoor–outdoor concentrations of RSPM in classroom of a naturally ventilated school building near an urban traffic roadway. Atmospheric Environment, 43(38), 6026-6038.
Habil, M., &Taneja, A. (2011). Children’s exposure to indoor particulate matter in naturally ventilated schools in India. Indoor and Built Environment, 20(4), 430-448.
Hieu, N. T., & Lee, B. K. (2010).Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea.Atmospheric Research, 98(2-4), 526-537.
Hildemann, L. M., Markowski, G. R., Jones, M. C., & Cass, G. R. (1991).Submicrometer aerosol mass distributions of emissions from boilers, fireplaces, automobiles, diesel trucks, and meat-cooking operations.Aerosol Science and Technology, 14(1), 138-152.
IRIS (Integrated Risk Assessment System), 1995. United States Environmental Protection Agency. www.epa.gov/IRIS, Accessed date: 11 November 2016.
Jiang, S.Y., Kaul, D.S., Yang, F., Sun, L., Ning, Z., 2015. Source apportionment and water solubility of metals in size segregated particles in urban environments. Sci. Total Environ. 533, 347–355.
Karar, K., Gupta, A. K., Kumar, A., & Biswas, A. K. (2006). Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM 10 particulates at the two sites of Kolkata, India. Environmental Monitoring and Assessment, 120(1), 347-360.
Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., &Amann, M. (2015). Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric environment, 120, 475-483.
Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M., ... & Chung, J. X. (2016). Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmospheric Chemistry and Physics, 16(2), 597-617.
Kloog, I. (2016). Fine particulate matter (PM2. 5) association with peripheral artery disease admissions in northeastern United States.International journal of environmental health research, 26(5-6), 572-577.
Kulshrestha, A., Satsangi, P. G., Masih, J., &Taneja, A. (2009).Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India.Science of the Total Environment, 407(24), 6196-6204.
Lee Jr, R. E., & Von Lehmden, D. J. (1973). Trace metal pollution in the environment. Journal of the Air Pollution Control Association, 23(10), 853-857.
Lin, Y. C., Hsu, S. C., Lin, S. H., & Huang, Y. T. (2020). Metallic elements emitted from industrial sources in Taiwan: Implications for source identification using airborne PM. Atmospheric Pollution Research, 11(4), 766-775.
Liu, X., Zhai, Y., Zhu, Y., Liu, Y., Chen, H., Li, P., ...&Zeng, G. (2015). Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha. Science of the Total Environment, 517, 215-221.
Mansha, M., Ghauri, B., Rahman, S., & Amman, A. (2012).Characterization and source apportionment of ambient air particulate matter (PM2. 5) in Karachi.Science of the total environment, 425, 176-183.
Massey, D. D., Kulshrestha, A., &Taneja, A. (2013).Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India.Atmospheric Environment, 67, 278-286.
Monaci, F., Bargagli, R., & Gasparo, D. (1997). Air pollution monitoring by lichens in a small medieval town of central Italy. Acta Botanica Neerlandica, 46(4), 403-412.
Nagpure, A. S., Gurjar, B. R., & Martel, J. C. (2014). Human health risks in national capital territory of Delhi due to air pollution. Atmospheric Pollution Research, 5(3), 371-380.
Niu, L., Ye, H., Xu, C., Yao, Y., & Liu, W. (2015).Highly time-and size-resolved fingerprint analysis and risk assessment of airborne elements in a megacity in the Yangtze River Delta, China.Chemosphere, 119, 112-121.
Oberdorster, G., (2001). Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74, 1-8 approach to indoor air pollution.Health Hum. Rights 15 (2), 160e167.
Olaniran, A., Balgobind, A., &Pillay, B. (2013). Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. International journal of molecular sciences, 14(5), 10197-10228.
Pant, P., & Harrison, R. M. (2012). Critical review of receptor modelling for particulate matter: a case study of India. Atmospheric Environment, 49, 1-12.
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.Journal of American Medical Association, 287(9), 1132-1141.
Prakash, J., Lohia, T., Mandariya, A. K., Habib, G., Gupta, T., & Gupta, S. K. (2018). Chemical characterization and quantitativ e assessment of source-specific health risk of trace metals in PM 1.0 at a road site of Delhi, India. Environmental Science and Pollution Research, 25(9), 8747-8764.
Prasad, R.K., Ravi Shankar, V., Saksena, S., 2003.Daily exposure to air pollution in indoor. Outdoor, -Veh. Micro-Environments: A Pilot Study Delhi, 57, 1-23.
Rajput, P., Sarin, M., Sharma, D., Singh, D., 2014. Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the indo-gangetic plain. Tellus B, 66.
Rohra, H., Tiwari, R., Khandelwal, N., &Taneja, A. (2018). Mass distribution and health risk assessment of size segregated particulate in varied indoor microenvironments of Agra, India-A case study. Urban climate, 24, 139-152.
RTI (2008) Research Triangle Institute (RTI), Standard Operating Procedure for Particulate Matter Gravimetric Analysis.
Sah, D., Verma, P. K., Kumari, K. M., &Lakhani, A. (2017). Chemical partitioning of fine particle-bound As, Cd, Cr, Ni, Co, Pb and assessment of associated cancer risk due to inhalation, ingestion and dermal exposure. Inhalation toxicology, 29(11), 483-493.
Schwartz, J., Dockery, D. W., &Neas, L. M. (1996). Is daily mortality associated specifically with fine particles? Journal of the Air & Waste Management Association, 46(10), 927-939.
Singh, N., Murari, V., Kumar, M., Barman, S. C., & Banerjee, T. (2017). Fine particulates over South Asia: review and meta-analysis of PM2. 5 source apportionment through receptor model. Environmental pollution, 223, 121-136.
Singh, P., Saini, R., &Taneja, A. (2014).Physicochemical characteristics of PM2. 5: Low, middle, and high–income group homes in Agra, India–a case study. Atmospheric Pollution Research, 5(3), 352-360.
Srimuruganandam, B., &Nagendra, S. S. (2012). Application of positive matrix factorization in characterization of PM10 and PM2.5 emission sources at urban roadside.Chemosphere, 88(1), 120-130.
Srivastava, A., Gupta, S., & Jain, V. K. (2009). Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi. Atmospheric Research, 92(1), 88-99.
Srivastava, R. K., &Sarkar, R. (2017).Suspended Particulate Matter Pollution in Jabalpur: A Case Study.International Journal of Plant, Animal and Environmental Sciences, 7(1), 101-108.
Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., ... & Hao, Z. (2004). The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmospheric Environment, 38(35), 5991-6004.
Taner, S., Pekey, B., &Pekey, H. (2013). Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks. Science of the total environment, 454, 79-87.
Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: a review. Science of the total environment, 400(1-3), 270-282.
Tiwari, R., Singh, P. P., &Taneja, A. (2020).Chemical Characterization of Particulate Matter at Traffic Prone Roadside Environment in Agra, India. Pollution, 6(2), 247-262.
USEPA (U.S. Environmental Protection Agency), (1998) Quality assurance guidance document 2.12: monitoring PM2.5 in ambient air using designated reference or class I equivalent methods. National Exposure Research Laboratory, Research Triangle Park, NC.
USEPA, 2009. Risk Assessment Guidance for Superfund: Volume I-Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). (Washington D.C.).
USEPA, 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120, Feb 6, 2014,U.S. Environmental Protection Agency, Washington D.C., pp. 20460.
Varshney, P., Saini, R., &Taneja, A. (2015). Trace element concentration in fine particulate matter (PM 2.5) and their bioavailability in different microenvironments in Agra, India: a case study. Environmental geochemistry and health, 38(2), 593-605.
Villalobos, A. M., Amonov, M. O., Shafer, M. M., Devi, J. J., Gupta, T., Tripathi, S. N., ...&Schauer, J. J. (2015). Source apportionment of carbonaceous fine particulate matter (PM2. 5) in two contrasting cities across the Indo–Gangetic Plain.Atmospheric Pollution Research, 6(3), 398-405.
Wallner, P., Hutter, H. P., &Moshammer, H. (2014). Worldwide associations between air quality and health end-points: Are they meaningful?.International journal of occupational medicine and environmental health, 27(5), 716-721.
WHO, 2016. 7 Million Premature Deaths Annually Linked to air Pollution. World Health Organization, Geneva, Switzerland Access at. http://www.who.int/mediacentre/news/releases/ 2014/air-pollution/
Yu, L., Wang, G., Zhang, R., Zhang, L., Song, Y., Wu, B., ...& Chu, J. (2013). Characterization and source apportionment of PM2.5 in an urban environment in Beijing.Aerosol and Air Quality Research, 13(2), 574-583.