1 Nelde, A. et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nature immunology 22, 74-85 (2021).
2 Bilich, T. et al. T cell and antibody kinetics delineate SARS-CoV-2 peptides mediating long-term immune responses in COVID-19 convalescent individuals. Sci Transl Med 13, doi:ARTN eabf7517
10.1126/scitranslmed.abf7517 (2021).
3 WHO. Weekly Epidemiological Update on COVID-19, < https://www.who.int/docs/default-source/coronaviruse/situation-reports/20201012-weekly-epi-update-9.pdf> (2021).
4 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New Engl J Med 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
5 Myers, L. C., Parodi, S. M., Escobar, G. J. & Liu, V. X. Characteristics of hospitalized adults with COVID-19 in an integrated health care system in California. Jama (2020).
6 Richardson, S. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. Jama (2020).
7 Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054-1062, doi:10.1016/S0140-6736(20)30566-3 (2020).
8 Ramasamy, M. N. et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 396, 1979-1993, doi:10.1016/S0140-6736(20)32466-1 (2021).
9 Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 383, 2603-2615, doi:10.1056/NEJMoa2034577 (2020).
10 Baden, L. R. et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 384, 403-416, doi:10.1056/NEJMoa2035389 (2021).
11 Bilich, T. et al. Preexisting and post-COVID-19 immune responses to SARS-CoV-2 in cancer patients. Cancer Discov, doi:10.1158/2159-8290.CD-21-0191 (2021).
12 Rammensee, H. G. et al. A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J Immunother Cancer 7, doi:ARTN 307
10.1186/s40425-019-0796-5 (2019).
13 Aucouturier, J., Dupuis, L., Deville, S., Ascarateil, S. & Ganne, V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1, 111-118, doi:10.1586/14760584.1.1.111 (2002).
14 Lee, P. et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol 19, 3836-3847, doi:10.1200/JCO.2001.19.18.3836 (2001).
15 Rodda, L. B. et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell 184, 169-183 e117, doi:10.1016/j.cell.2020.11.029 (2021).
16 Long, Q. X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 26, 1200-1204, doi:10.1038/s41591-020-0965-6 (2020).
17 Tan, A. T. et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep 34, doi:ARTN 108728
10.1016/j.celrep.2021.108728 (2021).
18 Soresina, A. et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol 31, 565-569, doi:10.1111/pai.13263 (2020).
19 Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol 5, doi:10.1126/sciimmunol.abd2071 (2020).
20 Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, eabf4063, doi:10.1126/science.abf4063 (2021).
21 Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457-462 (2020).
22 Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489-1501. e1415 (2020).
23 Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 587, 270-274 (2020).
24 Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 370, 89-94 (2020).
25 Herishanu, Y. et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood 137, 3165-3173, doi:10.1182/blood.2021011568 (2021).
26 Monin, L. et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. Lancet Oncol 22, 765-778, doi:10.1016/S1470-2045(21)00213-8 (2021).
27 Lee, L. Y. et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet 395, 1919-1926, doi:10.1016/S0140-6736(20)31173-9 (2020).
28 Yang, K. et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol 21, 904-913, doi:10.1016/S1470-2045(20)30310-7 (2020).
29 Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815-821, doi:10.1126/science.abh2644 (2021).
30 Andrew Rambaut et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations, <https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563> (2020).
31 Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant emergence and vaccine breakthrough. bioRxiv, 2021.2005.2008.443253, doi:10.1101/2021.05.08.443253 (2021).
32 Yadav, P. D. et al. Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. Clin Infect Dis, doi:10.1093/cid/ciab411 (2021).
33 Tegally, H. et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438-443, doi:10.1038/s41586-021-03402-9 (2021).
34 van Doorn, E., Liu, H., Huckriede, A. & Hak, E. Safety and tolerability evaluation of the use of Montanide ISA51 as vaccine adjuvant: A systematic review. Hum Vaccin Immunother 12, 159-169, doi:10.1080/21645515.2015.1071455 (2016).
35 Iwata-Yoshikawa, N. et al. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol 88, 8597-8614, doi:10.1128/JVI.00983-14 (2014).
36 Yasui, F. et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J Immunol 181, 6337-6348, doi:10.4049/jimmunol.181.9.6337 (2008).
37 Deming, D. et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 3, e525, doi:10.1371/journal.pmed.0030525 (2006).
38 Sadoff, J. et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N Engl J Med 384, 1824-1835, doi:10.1056/NEJMoa2034201 (2021).
39 Folegatti, P. M. et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396, 467-478, doi:10.1016/S0140-6736(20)31604-4 (2020).
40 Jackson, L. A. et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med 383, 1920-1931, doi:10.1056/NEJMoa2022483 (2020).
41 Zhu, F. C. et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 396, 479-488, doi:10.1016/S0140-6736(20)31605-6 (2020).
42 Mulligan, M. J. et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589-593, doi:10.1038/s41586-020-2639-4 (2020).
43 Messaoudi, I., Guevara Patino, J. A., Dyall, R., LeMaoult, J. & Nikolich-Zugich, J. Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense. Science 298, 1797-1800, doi:10.1126/science.1076064 (2002).
44 Tan, A. C., La Gruta, N. L., Zeng, W. & Jackson, D. C. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza A infection and vaccination in HLA-A2.1 transgenic mice. J Immunol 187, 1895-1902, doi:10.4049/jimmunol.1100664 (2011).
45 Kiepiela, P. et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 13, 46-53, doi:10.1038/nm1520 (2007).
46 Emary, K. R. W. et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet 397, 1351-1362, doi:10.1016/S0140-6736(21)00628-0 (2021).
47 Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592, 616-622, doi:10.1038/s41586-021-03324-6 (2021).
48 Wu, K. et al. Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine. N Engl J Med 384, 1468-1470, doi:10.1056/NEJMc2102179 (2021).
49 Lambkin, R., Novelli, P., Oxford, J. & Gelder, C. Human genetics and responses to influenza vaccination: clinical implications. Am J Pharmacogenomics 4, 293-298, doi:10.2165/00129785-200404050-00002 (2004).
50 Molano, A. et al. Cutting edge: the IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPIs in NK T cell activation and antimalarial responses. J Immunol 164, 5005-5009, doi:10.4049/jimmunol.164.10.5005 (2000).
51 Oliveira, G. A. et al. Class II-restricted protective immunity induced by malaria sporozoites. Infect Immun 76, 1200-1206, doi:10.1128/IAI.00566-07 (2008).
52 Xu, R., Johnson, A. J., Liggitt, D. & Bevan, M. J. Cellular and humoral immunity against vaccinia virus infection of mice. J Immunol 172, 6265-6271, doi:10.4049/jimmunol.172.10.6265 (2004).
53 Sette, A. et al. Selective CD4+ T cell help for antibody responses to a large viral pathogen: deterministic linkage of specificities. Immunity 28, 847-858, doi:10.1016/j.immuni.2008.04.018 (2008).
54 Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337-339, doi:10.1126/science.1082305 (2003).
55 Carvalho, L. H. et al. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat Med 8, 166-170, doi:10.1038/nm0202-166 (2002).
56 Kemball, C. C. et al. The antiviral CD8+ T cell response is differentially dependent on CD4+ T cell help over the course of persistent infection. J Immunol 179, 1113-1121, doi:10.4049/jimmunol.179.2.1113 (2007).
57 Marzo, A. L. et al. Fully functional memory CD8 T cells in the absence of CD4 T cells. J Immunol 173, 969-975, doi:10.4049/jimmunol.173.2.969 (2004).
58 van de Berg, P. J., van Leeuwen, E. M., ten Berge, I. J. & van Lier, R. Cytotoxic human CD4(+) T cells. Curr Opin Immunol 20, 339-343, doi:10.1016/j.coi.2008.03.007 (2008).
59 Johnson, A. J., Chu, C. F. & Milligan, G. N. Effector CD4+ T-cell involvement in clearance of infectious herpes simplex virus type 1 from sensory ganglia and spinal cords. J Virol 82, 9678-9688, doi:10.1128/JVI.01159-08 (2008).
60 Elyaman, W. et al. Distinct functions of autoreactive memory and effector CD4+ T cells in experimental autoimmune encephalomyelitis. Am J Pathol 173, 411-422, doi:10.2353/ajpath.2008.080142 (2008).
61 Tsuji, M., Romero, P., Nussenzweig, R. S. & Zavala, F. CD4+ cytolytic T cell clone confers protection against murine malaria. J Exp Med 172, 1353-1357, doi:10.1084/jem.172.5.1353 (1990).
62 Harrington, L. E., Mangan, P. R. & Weaver, C. T. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 18, 349-356, doi:10.1016/j.coi.2006.03.017 (2006).
63 Gallais, F. et al. Intrafamilial Exposure to SARS-CoV-2 Associated with Cellular Immune Response without Seroconversion, France. Emerg Infect Dis 27, doi:10.3201/eid2701.203611 (2021).
64 Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240-+, doi:10.1038/s41586-018-0810-y (2019).
65 Platten, M. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature, doi:10.1038/s41586-021-03363-z (2021).