1. Cavelier, L., Jazin, E., Jalonen, P. & Gyllensten, U. MtDNA substitution rate and segregation of heteroplasmy in coding and noncoding regions. Hum. Genet.107, 45–50 (2000).
2. Sigurğardóttir, S., Helgason, A., Gulcher, J. R., Stefansson, K. & Donnelly, P. The mutation rate in the human mtDNA control region. Am. J. Hum. Genet.66, 1599–1609 (2000).
3. Henn, B. M., Gignoux, C. R., Feldman, M. & Mountain, J. L. Characterizing the time dependency of human mitochondrial DNA mutation rate estimates. Mol. Biol. Evol.26, 217–230 (2009).
4. Santos, C. et al. Understanding differences between phylogenetic and pedigree-derived mtDNA mutation rate: A model using families from the Azores Islands (Portugal). Mol. Biol. Evol.22, 1490–1505 (2005).
5. Macaulay, V. et al. mtDNA mutation rates - No need to panic. Am. J. Hum. Genet.61, 983–990 (1997).
6. Pääbo, S. Mutational hot spots in the mitochondrial microcosm. Am. J. Hum. Genet.59, 493–496 (1996).
7. Kareem, M. A., Abdulzahra, A. I., Hameed, I. H. & Jebor, M. A. A new polymorphic positions discovered in mitochondrial DNA hypervariable region HVIII from central and north-central of Iraq. Mitochondrial DNA Part A27, 3250–3254 (2016).
8. Melton, T., Holland, C. & Holland, M. Forensic mitochondrial DNA analysis: Current practice and future potential. Forensic Sci. Rev.24, 101–122 (2012).
9. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature437, 376 (2005).
10. Bodner, M. et al. Helena, the hidden beauty: Resolving the most common West Eurasian mtDNA control region haplotype by massively parallel sequencing an Italian population sample. Forensic Sci. Int. Genet.15, 21–26 (2015).
11. Coble, M. et al. Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians. Int. J. Legal Med.118, 137–146 (2004).
12. Just, R. et al. Full mtGenome reference data: Development and characterization of 588 forensic-quality haplotypes representing three U.S. populations. Forensic Sci. Int. Genet.14, 141–155 (2015).
13. King, J. L. et al. High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. Forensic Sci. Int. Genet.12, 128–135 (2014).
14. Parsons, T. & Coble, M. Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome. Croat. Med. J.42, 304–309 (2001).
15. Stoljarova, M., King, J. L., Takahashi, M., Aaspõllu, A. & Budowle, B. Whole mitochondrial genome genetic diversity in an Estonian population sample. Int. J. Legal Med.130, 67–71 (2016).
16. Bellis, C. et al. Phenotypical Characterisation of the Isolated Norfolk Island Population Focusing on Epidemiological Indicators of Cardiovascular Disease. Hum. Hered.60, 211–219 (2005).
17. Bellis, C. et al. Linkage disequilibrium analysis in the genetically isolated Norfolk Island population. Heredity100, 366–373 (2008).
18. Cox, H. C. et al. Principal Component and Linkage Analysis of Cardiovascular Risk Traits in the Norfolk Isolate. Hum. Hered.68, 55–64 (2009).
19. Benton, M. C. et al. Mapping eQTLs in the Norfolk Island Genetic Isolate Identifies Candidate Genes for CVD Risk Traits. Am. J. Hum. Genet.93, 1087–1099 (2013).
20. Benton, M. et al. ‘Mutiny on the Bounty’: the genetic history of Norfolk Island reveals extreme gender-biased admixture. Investig. Genet.6, (2015).
21. Mcevoy, B. P. et al. European and Polynesian admixture in the Norfolk Island population. Hered. Cardiff105, 229–34 (2010).
22. Macgregor, S. et al. Legacy of mutiny on the Bounty: founder effect and admixture on Norfolk Island. Eur. J. Hum. Genet. EJHG18, 67–72 (2010).
23. Coster, A. pedigree. (2013).
24. Therneau, T. M., Daniel, S., Sinnwell, J. & Atkinson, E. kinship2. (2015).
25. Wickham, H. & RStudio. tidyverse. (2017).
26. RStudio. (2017).
27. Harvey, N. R. et al. Ion torrent high throughput mitochondrial genome sequencing (HTMGS). PLOS ONE14, e0224847 (2019).
28. Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet.23, 147 (1999).
29. MITOMAP. MITOMAP A human mitochondrial genome database. http://www.mitomap.org/MITOMAP (2017).
30. Parson, W. EMPOP mtDNA Database Directions for Use. (2019).
31. AusVet Animal Health Services. Epi Tools - Calculate confidence limits for a sample proportion. http://epitools.ausvet.com.au/content.php?page=CIProportion (2016).
32. Brown, L. D., Cai, T. T. & DasGupta, A. Interval estimation for a binomial proportion. Stat. Sci.16, 101–133 (2001).
33. Nomenclature Committee of the International Union of Biochemistry. Nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations 1984. Biochem. J.229, 281–286 (1985).
34. Schirmer, M. et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res.43, e37–e37 (2015).
35. Templeton, J. E. L. et al. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification. Investig. Genet.4, 26 (2013).
36. Yang, Y., Xie, B. & Yan, J. Application of next generation sequencing technology in forensic science. Genomics Proteomics Bioinformatics12, 190–197 (2014).
37. Yohe, S. & Thyagarajan, B. Review of Clinical Next-Generation Sequencing. Arch. Pathol. Lab. Med.141, 1544–1557 (2017).
38. Ratan, A. et al. Comparison of Sequencing Platforms for Single Nucleotide Variant Calls in a Human Sample. PLOS ONE8, e55089 (2013).
39. Budowle, B., DiZinno, J. A. & Wilson, M. R. Interpretation guidelines for mitochondrial DNA sequencing. in 10th International Symposium on Human Identification (10th International Symposium on Human Identification, 1999).
40. Kloss-Brandstätter, A. et al. Validation of next-generation sequencing of entire mitochondrial genomes and the diversity of mitochondrial DNA mutations in oral squamous cell carcinoma. PLoS ONE10, (2015).
41. Ramos, A. et al. Frequency and Pattern of Heteroplasmy in the Complete Human Mitochondrial Genome. PLOS ONE8, e74636 (2013).
42. Santos, C. et al. Frequency and pattern of heteroplasmy in the control region of human mitochondrial DNA. J. Mol. Evol.67, 191–200 (2008).
43. Santos, C. et al. Mutation patterns of mtDNA: Empirical inferences for the coding region. BMC Evol. Biol.8, 167 (2008).
44. Melton, T. Mitochondrial DNA Heteroplasmy. Forensic Sci. Rev.16, 1–20 (2004).
45. Lee, H. Y., Chung, U., Yoo, J.-E., Park, M. J. & Shin, K.-J. Quantitative and qualitative profiling of mitochondrial DNA length heteroplasmy. Electrophoresis25, 28–34 (2004).
46. Irwin, J. et al. Investigation of heteroplasmy in the human mitochondrial DNA control region: A synthesis of observations from more than 5000 global population samples. J. Mol. Evol.68, 516–527 (2009).
47. Hauswirth, W. W. & Clayton, D. A. Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acids Res.13, 8093–8104 (1985).
48. Hauswirth, W., Van De Walle, M., Olivo, P. & Laipis, P. Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue. Cell37, 1001–1007 (1984).
49. Madrigal, L. et al. High mitochondrial mutation rates estimated from deep-rooting Costa Rican pedigrees. Am. J. Phys. Anthropol.148, 327–333 (2012).
50. Sniegowski, P. D., Gerrish, P. J., Johnson, T. & Shaver, A. The evolution of mutation rates: separating causes from consequences. BioEssays22, 1057–1066 (2000).
51. Horai, S., Hayasaka, K., Kondo, R., Tsugane, K. & Takahata, N. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl. Acad. Sci.92, 532–536 (1995).
52. Parsons, T. et al. A high observed substitution rate in the human mitochondrial DNA control region. Nat. Genet.15, 363–368 (1997).
53. Rebolledo-Jaramillo, B. et al. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci.111, 15474–15479 (2014).
54. Howell, N. et al. The pedigree rate of sequence divergence in the human mitochondrial genome: There is a difference between phylogenetic and pedigree rates. Am. J. Hum. Genet.72, 659–670 (2003).
55. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. CB23, 553–559 (2013).
56. Ingman, M., Kaessmann, H., Pääbo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature408, 708–713 (2000).