[1] L. Przybyl, Systemic lupus erythematosus and the kidneys, Materia medica Polona. Polish journal of medicine and pharmacy 8 (1976) 75-80.
[2] G. Contreras, D. Roth, V. Pardo, L.G. Striker, D.R. Schultz, Lupus nephritis: a clinical review for practicing nephrologists, Clinical nephrology 57 (2002) 95-107.
[3] S. Dasari, A. Chakraborty, L. Truong, C. Mohan, A Systematic Review of Interpathologist Agreement in Histologic Classification of Lupus Nephritis, Kidney international reports 4 (2019) 1420-1425.
[4] B.S. Gloss, M.E. Dinger, The specificity of long noncoding RNA expression, Biochimica et biophysica acta 1859 (2016) 16-22.
[5] I. Ulitsky, Evolution to the rescue: using comparative genomics to understand long non-coding RNAs, Nature reviews. Genetics 17 (2016) 601-614.
[6] P.J. Batista, H.Y. Chang, Long noncoding RNAs: cellular address codes in development and disease, Cell 152 (2013) 1298-1307.
[7] Z. Xie, J. Li, P. Wang, Y. Li, X. Wu, S. Wang, H. Su, W. Deng, Z. Liu, S. Cen, Y. Ouyang, Y. Wu, H. Shen, Differential Expression Profiles of Long Noncoding RNA and mRNA of Osteogenically Differentiated Mesenchymal Stem Cells in Ankylosing Spondylitis, The Journal of rheumatology 43 (2016) 1523-1531.
[8] Y. Wu, F. Zhang, J. Ma, X. Zhang, L. Wu, B. Qu, S. Xia, S. Chen, Y. Tang, N. Shen, Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus, Arthritis research & therapy 17 (2015) 131.
[9] Z. Xue, C. Cui, Z. Liao, S. Xia, P. Zhang, J. Qin, Q. Guo, S. Chen, Q. Fu, Z. Yin, Z. Ye, Y. Tang, N. Shen, Identification of LncRNA Linc00513 Containing Lupus-Associated Genetic Variants as a Novel Regulator of Interferon Signaling Pathway, Frontiers in immunology 9 (2018) 2967.
[10] M.J. Mousavi, A. Jamshidi, A. Chopra, S. Aslani, M. Akhlaghi, M. Mahmoudi, Implications of the noncoding RNAs in rheumatoid arthritis pathogenesis, Journal of cellular physiology 234 (2018) 335-347.
[11] A. Lopez-Beltran, L. Cheng, T. Gevaert, A. Blanca, A. Cimadamore, M. Santoni, F. Massari, M. Scarpelli, M.R. Raspollini, R. Montironi, Current and emerging bladder cancer biomarkers with an emphasis on urine biomarkers, Expert review of molecular diagnostics 20 (2020) 231-243.
[12] G. Santoni, M.B. Morelli, C. Amantini, N. Battelli, Urinary Markers in Bladder Cancer: An Update, Frontiers in oncology 8 (2018) 362.
[13] M. Guttman, J.L. Rinn, Modular regulatory principles of large non-coding RNAs, Nature 482 (2012) 339-346.
[14] N. Hattori, [Parkin gene: its mutations and function], Rinsho shinkeigaku = Clinical neurology 42 (2002) 1077-1081.
[15] V.G. Bhoj, Z.J. Chen, Ubiquitylation in innate and adaptive immunity, Nature 458 (2009) 430-437.
[16] C. von Mering, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, B. Snel, STRING: a database of predicted functional associations between proteins, Nucleic acids research 31 (2003) 258-261.
[17] T.V. Peterson, M.K. Jaiswal, K.D. Beaman, J.M. Reynolds, Conditional Deletion of the V-ATPase a2-Subunit Disrupts Intrathymic T Cell Development, Frontiers in immunology 10 (2019) 1911.
[18] Y. Tang, W. Zhang, M. Zhu, L. Zheng, L. Xie, Z. Yao, H. Zhang, D. Cao, B. Lu, Lupus nephritis pathology prediction with clinical indices, Scientific reports 8 (2018) 10231.
[19] F. Zhang, L. Wu, J. Qian, B. Qu, S. Xia, T. La, Y. Wu, J. Ma, J. Zeng, Q. Guo, Y. Cui, W. Yang, J. Huang, W. Zhu, Y. Yao, N. Shen, Y. Tang, Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus, Journal of autoimmunity 75 (2016) 96-104.
[20] R.W. Yao, Y. Wang, L.L. Chen, Cellular functions of long noncoding RNAs, Nature cell biology 21 (2019) 542-551.
[21] Z. Zhang, D. Salisbury, T. Sallam, Long Noncoding RNAs in Atherosclerosis: JACC Review Topic of the Week, Journal of the American College of Cardiology 72 (2018) 2380-2390.
[22] L. Nair, H. Chung, U. Basu, Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery, Nature reviews. Molecular cell biology 21 (2020) 123-136.
[23] J.J. Quinn, H.Y. Chang, Unique features of long non-coding RNA biogenesis and function, Nature reviews. Genetics 17 (2016) 47-62.
[24] H. Ding, C. Lin, J. Cai, Q. Guo, M. Dai, C. Mohan, N. Shen, Urinary activated leukocyte cell adhesion molecule as a novel biomarker of lupus nephritis histology, Arthritis research & therapy 22 (2020) 122.
[25] J.G. Hanly, A.G. O'Keeffe, L. Su, M.B. Urowitz, J. Romero-Diaz, C. Gordon, S.C. Bae, S. Bernatsky, A.E. Clarke, D.J. Wallace, J.T. Merrill, D.A. Isenberg, A. Rahman, E.M. Ginzler, P. Fortin, D.D. Gladman, J. Sanchez-Guerrero, M. Petri, I.N. Bruce, M.A. Dooley, R. Ramsey-Goldman, C. Aranow, G.S. Alarcón, B.J. Fessler, K. Steinsson, O. Nived, G.K. Sturfelt, S. Manzi, M.A. Khamashta, R.F. van Vollenhoven, A.A. Zoma, M. Ramos-Casals, G. Ruiz-Irastorza, S.S. Lim, T. Stoll, M. Inanc, K.C. Kalunian, D.L. Kamen, P. Maddison, C.A. Peschken, S. Jacobsen, A. Askanase, C. Theriault, K. Thompson, V. Farewell, The frequency and outcome of lupus nephritis: results from an international inception cohort study, Rheumatology (Oxford, England) 55 (2016) 252-262.
[26] J. Quan, X. Pan, L. Zhao, Z. Li, K. Dai, F. Yan, S. Liu, H. Ma, Y. Lai, LncRNA as a diagnostic and prognostic biomarker in bladder cancer: a systematic review and meta-analysis, OncoTargets and therapy 11 (2018) 6415-6424.
[27] W. Zhang, S.C. Ren, X.L. Shi, Y.W. Liu, Y.S. Zhu, T.L. Jing, F.B. Wang, R. Chen, C.L. Xu, H.Q. Wang, H.F. Wang, Y. Wang, B. Liu, Y.M. Li, Z.Y. Fang, F. Guo, X. Lu, D. Shen, X. Gao, J.G. Hou, Y.H. Sun, A novel urinary long non-coding RNA transcript improves diagnostic accuracy in patients undergoing prostate biopsy, The Prostate 75 (2015) 653-661.
[28] L. Du, X. Jiang, W. Duan, R. Wang, L. Wang, G. Zheng, K. Yan, L. Wang, J. Li, X. Zhang, H. Pan, Y. Yang, C. Wang, Cell-free microRNA expression signatures in urine serve as novel noninvasive biomarkers for diagnosis and recurrence prediction of bladder cancer, Oncotarget 8 (2017) 40832-40842.
[29] J.M. Lorenzen, C. Schauerte, J.T. Kielstein, A. Hübner, F. Martino, J. Fiedler, S.K. Gupta, R. Faulhaber-Walter, R. Kumarswamy, C. Hafer, H. Haller, D. Fliser, T. Thum, Circulating long noncoding RNATapSaki is a predictor of mortality in critically ill patients with acute kidney injury, Clinical chemistry 61 (2015) 191-201.
[30] Q. Luo, X. Li, C. Xu, L. Zeng, J. Ye, Y. Guo, Z. Huang, J. Li, Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus, Molecular medicine reports 17 (2018) 3489-3496.
[31] M.J. Berridge, The endoplasmic reticulum: a multifunctional signaling organelle, Cell calcium 32 (2002) 235-249.
[32] Q. Liu, H. Körner, H. Wu, W. Wei, Endoplasmic reticulum stress in autoimmune diseases, Immunobiology 225 (2020) 151881.
[33] J. Jin, L. Zhao, W. Zou, W. Shen, H. Zhang, Q. He, Activation of Cyclooxygenase-2 by ATF4 During Endoplasmic Reticulum Stress Regulates Kidney Podocyte Autophagy Induced by Lupus Nephritis, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 48 (2018) 753-764.
[34] A.P. Kuan, P.L. Cohen, p53 is required for spontaneous autoantibody production in B6/lpr lupus mice, European journal of immunology 35 (2005) 1653-1660.
[35] C. Miret, R. Molina, X. Filella, M. García-Carrasco, G. Claver, M. Ingelmo, A. Ballesta, J. Font, Relationship of p53 with other oncogenes, cytokines and systemic lupus erythematosus activity, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 24 (2003) 185-188.
[36] P. Mistry, M.J. Kaplan, Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis, Clinical immunology (Orlando, Fla.) 185 (2017) 59-73.
[37] Y.C. Chen, P.Y. Kuo, Y.C. Chou, H.E. Chong, Y.T. Hsieh, M.L. Yang, C.L. Wu, A.L. Shiau, C.R. Wang, Up-Regulated Expression of Pro-Apoptotic Long Noncoding RNA lincRNA-p21 with Enhanced Cell Apoptosis in Lupus Nephritis, International journal of molecular sciences 22 (2020).
[38] M. Wagrowska-Danilewicz, M. Danilewicz, Apoptosis in lupus SLE-N IV and non-lupus mesangiocapillary glomerulonephritis type I MCGN. I. A comparative study, Journal of nephrology 11 (1998) 44-49.
[39] T. Vyshkina, A. Sylvester, S. Sadiq, E. Bonilla, J.A. Canter, A. Perl, B. Kalman, Association of common mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus, Clinical immunology (Orlando, Fla.) 129 (2008) 31-35.
[40] M.K.M. Ma, S. Yung, T.M. Chan, mTOR Inhibition and Kidney Diseases, Transplantation 102 (2018) S32-s40.
[41] J. He, J. Ma, B. Ren, A. Liu, Advances in systemic lupus erythematosus pathogenesis via mTOR signaling pathway, Seminars in arthritis and rheumatism 50 (2020) 314-320.
[42] Z.W. Lai, R. Kelly, T. Winans, I. Marchena, A. Shadakshari, J. Yu, M. Dawood, R. Garcia, H. Tily, L. Francis, S.V. Faraone, P.E. Phillips, A. Perl, Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial, Lancet (London, England) 391 (2018) 1186-1196.
[43] C. Zhang, C.C.Y. Chan, K.F. Cheung, M.K.M. Chau, D.Y.H. Yap, M.K.M. Ma, K.W. Chan, S. Yung, T.M. Chan, Effect of mycophenolate and rapamycin on renal fibrosis in lupus nephritis, Clinical science (London, England : 1979) 133 (2019) 1721-1744.
[44] H. Zhang, R. Fu, C. Guo, Y. Huang, H. Wang, S. Wang, J. Zhao, N. Yang, Anti-dsDNA antibodies bind to TLR4 and activate NLRP3 inflammasome in lupus monocytes/macrophages, Journal of translational medicine 14 (2016) 156.
[45] J. He, M. Sun, S. Tian, Procyanidin B2 prevents lupus nephritis development in mice by inhibiting NLRP3 inflammasome activation, Innate immunity 24 (2018) 307-315
[46] E.M. Tan, A.S. Cohen, J.F. Fries, A.T. Masi, D.J. McShane, N.F. Rothfield, J.G. Schaller, N. Talal, R.J. Winchester, The 1982 revised criteria for the classification of systemic lupus erythematosus, Arthritis and rheumatism 25 (1982) 1271-1277.
[47] D. Szklarczyk, J.H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Simonovic, A. Santos, N.T. Doncheva, A. Roth, P. Bork, L.J. Jensen, C. von Mering, The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible, Nucleic acids research 45 (2017) D362-d368.
[48] G.D. Bader, C.W. Hogue, An automated method for finding molecular complexes in large protein interaction networks, BMC bioinformatics 4 (2003) 2.
[49] V. Law, C. Knox, Y. Djoumbou, T. Jewison, A.C. Guo, Y. Liu, A. Maciejewski, D. Arndt, M. Wilson, V. Neveu, A. Tang, G. Gabriel, C. Ly, S. Adamjee, Z.T. Dame, B. Han, Y. Zhou, D.S. Wishart, DrugBank 4.0: shedding new light on drug metabolism, Nucleic acids research 42 (2014) D1091-1097.