Amarasekera, G.; Scarlett, M. J.; Mainwaring, D.E., 1995. Micropore size distributions and specific interactions in coals. Fuel. Fuel 74 (1), 115− 118.
Barkat Ullah, Yuanping Cheng, Liang Wang, Biao Hu, Izhar Mithal Jiskani, Fawad Ul Hassan, Niaz Muhammad Shahani, M.A., 2021. Experimental and theoretical analyses to predict coal and gas outburst using desorption indices of drill cuttings. Arab. J. Geosci.
Barsotti, E., Tan, S.P., Saraji, S., Piri, M., Chen, J.-H., 2016a. A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs. Fuel 184, 344–361. https://doi.org/10.1016/j.fuel.2016.06.123
Barsotti, E., Tan, S.P., Saraji, S., Piri, M., Chen, J.H., 2016b. A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs. Fuel 184, 344–361. https://doi.org/10.1016/j.fuel.2016.06.123
C.R. Clarksona,*, R.M.B., 1999. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study.1. Isotherms and pore volume distributions 78, 1345–1362.
Chen, K.P., 2011. A new mechanistic model for prediction of instantaneous coal outbursts - Dedicated to the memory of Prof. Daniel D. Joseph. Int. J. Coal Geol. https://doi.org/10.1016/j.coal.2011.04.012
Chen, S., Tao, S., Tang, D., Xu, H., Li, S., Zhao, J., Jiang, Q., Yang, H., 2017. Pore structure characterization of different rank coals using N2 and CO2 adsorption and its effect on CH4 adsorption capacity : A case in Panguan syncline , western Guizhou , China.
Cheng, Y., Jiang, H., Zhang, X., Cui, J., Song, C., Li, X., 2017. Effects of coal rank on physicochemical properties of coal and on methane adsorption. Int. J. Coal Sci. Technol. 4, 129–146. https://doi.org/10.1007/s40789-017-0161-6
Cheng, Y.P., Wang, L., Zhang, X.L., 2011. Environmental impact of coal mine methane emissions and responding strategies in China. Int. J. Greenh. Gas Control. https://doi.org/10.1016/j.ijggc.2010.07.007
Clarkson, C.R., Bustin, R.M., 1999. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel 78, 1333–1344. https://doi.org/10.1016/S0016-2361(99)00055-1
Clarkson, C. R., Bustin, R.M., 1999. Effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 2. Adsorption rate modeling. Fuel 78, 1345–1362. https://doi.org/10.1016/S0016-2361(99)00056-3
Clarkson, C.R., Solano, N., Bustin, R.M., Bustin, A.M.M., Chalmers, G.R.L., He, L., Melnichenko, Y.B., Radliński, A.P., Blach, T.P., 2013. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 103, 606–616. https://doi.org/10.1016/j.fuel.2012.06.119
Fu, H., Tang, D., Xu, T., Xu, H., Tao, S., Li, S., Yin, Z.Y., Chen, B., Zhang, C., Fu, H., Tang, D., Xu, H., Tao, S., Li, S., Yin, Z.Y., Chen, B., Zhang, C., Wang, L., 2017a. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel 193, 254–264. https://doi.org/10.1016/j.fuel.2016.11.069
Fu, H., Tang, D., Xu, T., Xu, H., Tao, S., Li, S., Yin, Z.Y., Chen, B., Zhang, C., Fu, H., Tang, D., Xu, H., Tao, S., Li, S., Yin, Z.Y., Chen, B., Zhang, C., Wang, L., 2017b. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel 193, 254–264. https://doi.org/10.1016/j.fuel.2016.11.069
Guo, H., Cheng, Y., Yuan, L., Wang, L., Zhou, H., 2016. Unsteady-State Diffusion of Gas in Coals and Its Relationship with Coal Pore Structure. Energy and Fuels 30, 7014–7024. https://doi.org/10.1021/acs.energyfuels.6b01218
Hou, S., Wang, Xiaoming, Wang, Xingjin, Yuan, Y., Pan, S., Wang, Xiaomei, 2017. Pore structure characterization of low volatile bituminous coals with different particle size and tectonic deformation using low pressure gas adsorption. Int. J. Coal Geol. https://doi.org/10.1016/j.coal.2017.09.013
Jiang, J., Yang, W., Cheng, Y., Zhao, K., Zheng, S., 2019a. Pore structure characterization of coal particles via MIP, N2 and CO2 adsorption: Effect of coalification on nanopores evolution. Powder Technol. 354, 136–148. https://doi.org/10.1016/j.powtec.2019.05.080
Jiang, J., Yang, W., Cheng, Y., Zhao, K., Zheng, S., 2019b. Pore structure characterization of coal particles via MIP, N2 and CO2 adsorption: Effect of coalification on nanopores evolution. Powder Technol. 354, 136–148. https://doi.org/10.1016/j.powtec.2019.05.080
Jin, K., Cheng, Y., Liu, Q., Zhao, W., Wang, L., Wang, F., 2016. Experimental Investigation of Pore Structure Damage in Pulverized Coal : Implications for Methane Adsorption and Di ff usion Characteristics. https://doi.org/10.1021/acs.energyfuels.6b02530
Laxminarayana, C., Crosdale, P.J., 1999. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. Int. J. Coal Geol. 40, 309–325. https://doi.org/10.1016/S0166-5162(99)00005-1
Li, J., Liu, D., Yao, Y., Cai, Y., Xu, L., Huang, S., 2014. Control of CO2 permeability change in different rank coals during pressure depletion: An experimental study. Energy and Fuels. https://doi.org/10.1021/ef402285n
Li, X., Jiang, C., Tang, J., Chen, Y., Yang, D., Chen, Z., 2017. A Fisher’s Criterion-Based Linear Discriminant Analysis for Predicting the Critical Values of Coal and Gas Outbursts Using the Initial Gas Flow in a Borehole. Math. Probl. Eng. https://doi.org/10.1155/2017/7189803
Lu, S., Cheng, Y., 2015. Pore structure and its impact on CH 4 adsorption capability and diffusion characteristics of normal and deformed coals from Qinshui Basin Liang Wang 10, 94–114.
Meng, Z.P., Liu, S.S., Wang, B.Y., Tian, Y.D., Wu, J., 2015. Adsorption capacity and its pore structure of coals with different coal body structure. Meitan Xuebao/Journal China Coal Soc. https://doi.org/10.13225/j.cnki.jccs.2015.0620
Neimark, A. V.; Lin, Y.; Ravikovitch, P. I.; Thommes, M., 2009. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon N. Y. 47(7), 1617−1628.
Nie, B., Liu, X., Yang, L., Meng, J., Li, X., 2015. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel 158, 908–917. https://doi.org/10.1016/j.fuel.2015.06.050
Qi, L., Tang, X., Wang, Z., Peng, X., 2017. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 27, 371–377. https://doi.org/10.1016/j.ijmst.2017.01.005
Ren, P., Xu, H., Tang, D., Li, Y., Chen, Z., Sun, C., Zhang, F., Chen, S., Xin, F., Cao, L., 2019a. Pore structure and fractal characterization of main coal-bearing synclines in western Guizhou, China. J. Nat. Gas Sci. Eng. 63, 58–69. https://doi.org/10.1016/j.jngse.2019.01.010
Ren, P., Xu, H., Tang, D., Li, Y., Chen, Z., Sun, C., Zhang, F., Chen, S., Xin, F., Cao, L., 2019b. Pore structure and fractal characterization of main coal-bearing synclines in western Guizhou, China. J. Nat. Gas Sci. Eng. 63, 58–69. https://doi.org/10.1016/j.jngse.2019.01.010
Shi, J.-Q., Durucan, S., 2005. Gas Storage and Flow in Coalbed Reservoirs: Implementation of a Bidisperse Pore Model for Gas Diffusion in Coal Matrix. SPE Reserv. Eval. Eng. 8, 169–175. https://doi.org/10.2118/84342-PA
Shi, J.Q., Durucan, S., 2003. Gas Storage and Flow in Coalbed Reservoirs: Implementation of a Bidisperse Pore Model for Gas Diffusion in Coal Matrix, in: Proceedings - SPE Annual Technical Conference and Exhibition. https://doi.org/10.2523/84342-ms
Sun, W., Feng, Y., Jiang, C., Chu, W., 2015. Fractal characterization and methane adsorption features of coal particles taken from shallow and deep coalmine layers. Fuel. https://doi.org/10.1016/j.fuel.2015.03.083
Sun, Z., Li, L., Wang, F., Zhou, G., 2020. Desorption characterization of soft and hard coal and its influence on outburst prediction index. Energy Sources, Part A Recover. Util. Environ. Eff. 42, 2807–2821. https://doi.org/10.1080/15567036.2019.1618991
Tang, Y.Y., Sun, S.Q., Tian, G.L., 2005. Study of computer identifying on tectonic soft coal with well log. Meitan Xuebao/Journal China Coal Soc.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117
Wang, C., Yang, S., Jiang, C., Yang, D., Zhang, C., Li, X., Chen, Y., Tang, J., 2017. A method of rapid determination of gas pressure in a coal seam based on the advantages of gas spherical flow field. J. Nat. Gas Sci. Eng. https://doi.org/10.1016/j.jngse.2017.05.021
Wang, L., Liu, S., Cheng, Y.P., Yin, G. zhi, Guo, P. kun, Mou, J. hui, 2017. The effects of magma intrusion on localized stress distribution and its implications for coal mine outburst hazards. Eng. Geol. https://doi.org/10.1016/j.enggeo.2017.01.002
Wang, S., Elsworth, D., Liu, J., 2013. Mechanical behavior of methane infiltrated coal: The roles of gas desorption, stress level and loading rate. Rock Mech. Rock Eng. https://doi.org/10.1007/s00603-012-0324-0
Wang, Z., Cheng, Y., Qi, Y., Wang, R., Wang, L., Jiang, J., 2019. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption. Powder Technol. https://doi.org/10.1016/j.powtec.2019.03.030
Wang, Z., Cheng, Y., Zhang, K., Hao, C., Wang, L., Li, W., Hu, B., 2018. Characteristics of microscopic pore structure and fractal dimension of bituminous coal by cyclic gas adsorption/desorption: An experimental study. Fuel 232, 495–505. https://doi.org/10.1016/j.fuel.2018.06.004
Wei, P., Liang, Y., Zhao, S., Peng, S., Li, X., Meng, R., 2019. Characterization of pores and fractures in soft coal from the No. 5 soft coalbed in the Chenghe Mining Area. Processes 7, 1–19. https://doi.org/10.3390/pr7010013
Wu, F.A.Y.C.D., Wang, L., 2013. The effect of small micropores on methane adsorption of coals from Northern China 83–90. https://doi.org/10.1007/s10450-012-9421-3
Xue, S., Yuan, L., Wang, Y., Xie, J., 2014. Numerical analyses of the major parameters affecting the initiation of outbursts of coal and gas. Rock Mech. Rock Eng. https://doi.org/10.1007/s00603-013-0425-4
Y. Yao, D. Liu, D. Tang, S. Tang, W.H., 2008. Fractal characterization of adsorptionpores of coals from North China: An investigation on CH adsorption capacity of coals. Int. J. Coal Geol 73, 27–42.
Yao, Y., Liu, D., Che, Y., Tang, D., Tang, S., Huang, W., 2010. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel 89, 1371–1380. https://doi.org/10.1016/j.fuel.2009.11.005
Yao, Y., Liu, D., Tang, D., Tang, S., Che, Y., Huang, W., 2009a. Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coalfield, Southeastern Ordos Basin, China. Int. J. Coal Geol. https://doi.org/10.1016/j.coal.2008.09.011
Yao, Y., Liu, D., Tang, D., Tang, S., Che, Y., Huang, W., 2009b. International Journal of Coal Geology Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coal fi eld , Southeastern Ordos Basin , China. Int. J. Coal Geol. 78, 1–15. https://doi.org/10.1016/j.coal.2008.09.011
Yao, Y., Liu, D., Tang, D., Tang, S., Huang, W., 2008. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 73, 27–42. https://doi.org/10.1016/j.coal.2007.07.003
Yin, G., Shang, D., Li, M., Huang, J., Gong, T., Song, Z., 2018. Permeability evolution and mesoscopic cracking behaviors of liquid nitrogen cryogenic freeze fracturing in low permeable and heterogeneous coal. Powder Technol. 325, 234–246. https://doi.org/10.1016/j.powtec.2017.10.058
Yue, J., Wang, Z., Chen, J., 2019a. Dynamic response characteristics of water and methane during isobaric imbibition process in remolded coal containing methane. Energy Explor. Exploit. https://doi.org/10.1177/0144598718798083
Yue, J., Wang, Z., Chen, J., Zheng, M., Wang, Q., Lou, X., 2019b. Investigation of pore structure characteristics and adsorption characteristics of coals with different destruction types. Adsorpt. Sci. Technol. 37, 623–648. https://doi.org/10.1177/0263617419868076
Zarebska, K., Ceglarska-Stefańska, G., 2008. The change in effective stress associated with swelling during carbon dioxide sequestration on natural gas recovery. Int. J. Coal Geol. https://doi.org/10.1016/j.coal.2007.11.003
Zhang, D., Gu, L., Li, S., Lian, P., Tao, J., 2013. Interactions of Supercritical CO 2 with Coal. Energy & Fuels 27, 387–393. https://doi.org/10.1021/ef301191p
Zhang, K., Cheng, Y., Jin, K., Guo, H., Liu, Q., Dong, J., Li, W., 2017. Effects of Supercritical CO2 Fluids on Pore Morphology of Coal: Implications for CO2 Geological Sequestration. Energy and Fuels 31, 4731–4741. https://doi.org/10.1021/acs.energyfuels.6b03225
Zhao, J., Xu, H., Tang, D., Mathews, J.P., Li, S., Tao, S., 2016. A comparative evaluation of coal specific surface area by CO2 and N2 adsorption and its influence on CH4 adsorption capacity at different pore sizes. Fuel 183, 420–431. https://doi.org/10.1016/j.fuel.2016.06.076
Zhao, W., Cheng, Y., Yuan, M., An, F., 2014. Effect of adsorption contact time on coking coal particle desorption characteristics. Energy and Fuels 28, 2287–2296. https://doi.org/10.1021/ef402093g
Zhao, Y., Liu, S., Elsworth, D., Jiang, Y., Zhu, J., 2014. Pore structure characterization of coal by synchrotron small-angle X-ray scattering and transmission electron microscopy. Energy and Fuels 28, 3704–3711. https://doi.org/10.1021/ef500487d