1. Kaczmarek, L.K. and Y. Zhang, Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev, 2017. 97(4): p. 1431-1468.
2. Rudy, B. and C.J. McBain, Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci, 2001. 24(9): p. 517-26.
3. Poirier, K., et al., Loss of Function of KCNC1 is associated with intellectual disability without seizures. Eur J Hum Genet, 2017. 25(5): p. 560-564.
4. Oliver, K.L., et al., Myoclonus epilepsy and ataxia due to KCNC1 mutation: Analysis of 20 cases and K(+) channel properties. Ann Neurol, 2017. 81(5): p. 677-689.
5. Muona, M., et al., A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet, 2015. 47(1): p. 39-46.
6. Park, J., et al., KCNC1-related disorders: new de novo variants expand the phenotypic spectrum. Ann Clin Transl Neurol, 2019. 6(7): p. 1319-1326.
7. Nascimento, F.A. and D.M. Andrade, Myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK) is caused by heterozygous KCNC1 mutations. Epileptic Disord, 2016. 18(S2): p. 135-138.
8. Munch, A.S., et al., Pharmacological rescue of mutated Kv3.1 ion-channel linked to progressive myoclonus epilepsies. Eur J Pharmacol, 2018. 833: p. 255-262.
9. Ambrosino, P., et al., Fluoxetine as a precision medicine approach in epileptic encephalopathies caused by gain-of-function mutations in KCNC1 channels, in Joint Meeting of the Federation of European Physiological Societies and the Italian Physiological Society. 2019: Bologna.
10. Bixby, K.A., et al., Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nat Struct Biol, 1999. 6(1): p. 38-43.
11. Nanao, M.H., et al., Determining the basis of channel-tetramerization specificity by x-ray crystallography and a sequence-comparison algorithm: Family Values (FamVal). Proc Natl Acad Sci U S A, 2003. 100(15): p. 8670-5.
12. Labro, A.J., et al., Kv3.1 uses a timely resurgent K(+) current to secure action potential repolarization. Nat Commun, 2015. 6: p. 10173.
13. Mishina, Y., H. Mutoh, and T. Knopfel, Transfer of Kv3.1 voltage sensor features to the isolated Ci-VSP voltage-sensing domain. Biophys J, 2012. 103(4): p. 669-76.
14. Priest, M.F., et al., S3-S4 linker length modulates the relaxed state of a voltage-gated potassium channel. Biophys J, 2013. 105(10): p. 2312-22.
15. Xu, M., et al., The axon-dendrite targeting of Kv3 (Shaw) channels is determined by a targeting motif that associates with the T1 domain and ankyrin G. J Neurosci, 2007. 27(51): p. 14158-70.
16. Gu, Y., et al., Alternative splicing regulates kv3.1 polarized targeting to adjust maximal spiking frequency. J Biol Chem, 2012. 287(3): p. 1755-69.
17. Jerng, H.H. and M. Covarrubias, K+ channel inactivation mediated by the concerted action of the cytoplasmic N- and C-terminal domains. Biophys J, 1997. 72(1): p. 163-74.
18. Long, S.B., E.B. Campbell, and R. Mackinnon, Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science, 2005. 309(5736): p. 897-903.
19. Matthies, D., et al., Single-particle cryo-EM structure of a voltage-activated potassium channel in lipid nanodiscs. Elife, 2018. 7.
20. Long, S.B., et al., Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature, 2007. 450(7168): p. 376-82.
21. Long, S.B., E.B. Campbell, and R. Mackinnon, Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science, 2005. 309(5736): p. 903-8.
22. Kobertz, W.R. and C. Miller, K+ channels lacking the 'tetramerization' domain: implications for pore structure. Nat Struct Biol, 1999. 6(12): p. 1122-5.
23. Barros, F., P. Dominguez, and P. de la Pena, Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol, 2012. 3: p. 49.
24. Minor, D.L., et al., The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell, 2000. 102(5): p. 657-70.
25. Wang, G. and M. Covarrubias, Voltage-dependent gating rearrangements in the intracellular T1-T1 interface of a K+ channel. J Gen Physiol, 2006. 127(4): p. 391-400.
26. Wang, G., et al., Zn2+-dependent redox switch in the intracellular T1-T1 interface of a Kv channel. J Biol Chem, 2007. 282(18): p. 13637-47.
27. Cushman, S.J., et al., Voltage dependent activation of potassium channels is coupled to T1 domain structure. Nat Struct Biol, 2000. 7(5): p. 403-7.
28. Wang, G., et al., Functionally active t1-t1 interfaces revealed by the accessibility of intracellular thiolate groups in kv4 channels. J Gen Physiol, 2005. 126(1): p. 55-69.
29. Liu, S., et al., Structures of wild-type and H451N mutant human lymphocyte potassium channel KV1.3. Cell Discov, 2021. 7(1): p. 39.
30. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021.
31. Botte, M., et al., Apo and ligand-bound high resolution Cryo-EM structures of the human Kv3.1 reveal a novel binding site for positive modulators. 2021: biorRxiv.
32. Ju, M., et al., The Roles of N- and C-terminal determinants in the activation of the Kv2.1 potassium channel. J Biol Chem, 2003. 278(15): p. 12769-78.
33. Wang, L.Y., et al., Activation of Kv3.1 channels in neuronal spine-like structures may induce local potassium ion depletion. Proc Natl Acad Sci U S A, 1998. 95(4): p. 1882-7.
34. Ranjan, R., et al., A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (Kv) Family. Front Cell Neurosci, 2019. 13: p. 358.
35. Wisedchaisri, G., et al., Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell, 2019. 178(4): p. 993-1003 e12.
36. Aiyar, J., et al., The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway. Biophys J, 1994. 67(6): p. 2261-4.
37. Lee, S.Y., A. Banerjee, and R. MacKinnon, Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K(+) channels. PLoS Biol, 2009. 7(3): p. e47.
38. Gu, Y., J. Barry, and C. Gu, Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites. J Physiol, 2013. 591(10): p. 2491-507.
39. Poveda, J.A., et al., Modulation of the potassium channel KcsA by anionic phospholipids: Role of arginines at the non-annular lipid binding sites. Biochim Biophys Acta Biomembr, 2019. 1861(10): p. 183029.
40. Banerjee, A., et al., Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K(+) channel. Elife, 2013. 2: p. e00594.
41. Bai, Y., et al., Structural basis for pharmacological modulation of the TRPC6 channel. Elife, 2020. 9.
42. Schmiege, P., et al., Human TRPML1 channel structures in open and closed conformations. Nature, 2017. 550(7676): p. 366-370.
43. Tang, L., et al., Structural basis for inhibition of a voltage-gated Ca(2+) channel by Ca(2+) antagonist drugs. Nature, 2016. 537(7618): p. 117-121.
44. Sun, J. and R. MacKinnon, Structural Basis of Human KCNQ1 Modulation and Gating. Cell, 2020. 180(2): p. 340-347.e9.
45. Lu, Z., A.M. Klem, and Y. Ramu, Ion conduction pore is conserved among potassium channels. Nature, 2001. 413(6858): p. 809-13.
46. Lu, Z., A.M. Klem, and Y. Ramu, Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol, 2002. 120(5): p. 663-76.
47. Fernández-Mariño, A.I., et al., Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K. Nat Struct Mol Biol, 2018. 25(4): p. 320-326.
48. Bassetto, C.A., J.L. Carvalho-de-Souza, and F. Bezanilla, Molecular basis for functional connectivity between the voltage sensor and the selectivity filter gate in Shaker K(+) channels. Elife, 2021. 10.
49. Kang, P.W., et al., Calmodulin acts as a state-dependent switch to control a cardiac potassium channel opening. Sci Adv, 2020. 6(50).
50. Blunck, R. and Z. Batulan, Mechanism of electromechanical coupling in voltage-gated potassium channels. Front Pharmacol, 2012. 3: p. 166.
51. Punjani, A., et al., cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods, 2017. 14(3): p. 290-296.
52. Pettersen, E.F., et al., UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 2004. 25(13): p. 1605-12.
53. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 1): p. 2126-32.
54. Klaholz, B.P., Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis. Acta Crystallogr D Struct Biol, 2019. 75(Pt 10): p. 878-881.
55. Yang, E., et al., Electrophysiological Analysis of Voltage-Gated Ion Channel Modulation by General Anesthetics. Methods Enzymol, 2018. 602: p. 339-368.
56. Klesse, G., et al., CHAP: A Versatile Tool for the Structural and Functional Annotation of Ion Channel Pores. J Mol Biol, 2019. 431(17): p. 3353-3365.
57. Pravda, L., et al., MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res, 2018. 46(W1): p. W368-W373.