1 Sun, H. et al. A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nature Communications 10, 3302, doi:10.1038/s41467-019-11102-2 (2019).
2 Angell, M., Zhu, G., Lin, M.-C., Rong, Y. & Dai, H. Ionic Liquid Analogs of AlCl3 with Urea Derivatives as Electrolytes for Aluminum Batteries. Advanced Functional Materials 30, 1901928, doi:10.1002/adfm.201901928 (2020).
3 Zhu, G. et al. Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes. RSC Advances 9, 11322-11330, doi:10.1039/C9RA00765B (2019).
4 Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324-328, doi:10.1038/nature14340
http://www.nature.com/nature/journal/v520/n7547/abs/nature14340.html#supplementary-information (2015).
5 Angell, M. et al. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proceedings of the National Academy of Sciences 114, 834-839, doi:10.1073/pnas.1619795114 (2017).
6 Pan, C.-J. et al. An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries. Proceedings of the National Academy of Sciences 115, 5670-5675, doi:10.1073/pnas.1803576115 (2018).
7 Di Lecce, D., Carbone, L., Gancitano, V. & Hassoun, J. Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes. Journal of Power Sources 334, 146-153, doi:https://doi.org/10.1016/j.jpowsour.2016.09.164 (2016).
8 Agostini, M., Xiong, S., Matic, A. & Hassoun, J. Polysulfide-containing Glyme-based Electrolytes for Lithium Sulfur Battery. Chemistry of Materials 27, 4604-4611, doi:10.1021/acs.chemmater.5b00896 (2015).
9 Cai, K., Song, M.-K., Cairns, E. J. & Zhang, Y. Nanostructured Li2S–C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries. Nano Letters 12, 6474-6479, doi:10.1021/nl303965a (2012).
10 Venkatasetty, H. V. & Saathoff, D. J. Properties of LiAlCl4 ‐ SOCl2 Solutions for Li / SOCl2 Battery. Journal of The Electrochemical Society 128, 773-777, doi:10.1149/1.2127503 (1981).
11 Tsaur, K. C. & Pollard, R. Mathematical Modeling of the Lithium, Thionyl Chloride Static Cell: II . Acid Electrolyte. Journal of The Electrochemical Society 131, 984-990, doi:10.1149/1.2115788 (1984).
12 Istone, W. K. & Brodd, R. J. The Mechanisms of Thionyl Chloride Reduction at Solid Electrodes. Journal of The Electrochemical Society 131, 2467-2470, doi:10.1149/1.2115325 (1984).
13 Gangadharan, R., Namboodiri, P. N. N., Prasad, K. V. & Viswanathan, R. The lithium—thionyl chloride battery — a review. Journal of Power Sources 4, 1-9, doi:https://doi.org/10.1016/0378-7753(79)80032-4 (1979).
14 Madou, M. J. & Szpak, S. Investigation of SOCl2 Reduction by Cyclic Voltammetry and AC Impedance Measurements. Journal of The Electrochemical Society 131, 2471-2475, doi:10.1149/1.2115326 (1984).
15 Bedfer, Y., Corset, J., Dhamelincourt, M. C., Wallart, F. & Barbier, P. Raman spectroscopic studies of the structure of electrolytes used in the Li/SOCl2 battery. Journal of Power Sources 9, 267-272, doi:https://doi.org/10.1016/0378-7753(83)87027-X (1983).
16 Carter, B. J. et al. Mechanistic studies related to the safety of Li/SOCl/sub 2/ cells. J. Electrochem. Soc.; (United States), Medium: X; Size: Pages: 525-528 (1985).
17 Klinedinst, K. A. & Domeniconi, M. J. High Rate Discharge Characteristics of Li / SOCl2 Cells. Journal of The Electrochemical Society 127, 539-544, doi:10.1149/1.2129708 (1980).
18 Abraham, K. M. & Mank, R. M. Some Chemistry in the Li / SOCl2 Cell. Journal of The Electrochemical Society 127, 2091-2096, doi:10.1149/1.2129352 (1980).
19 Wang, D. et al. The Effects of Pore Size on Electrical Performance in Lithium-Thionyl Chloride Batteries. Frontiers in Materials 6, doi:10.3389/fmats.2019.00245 (2019).
20 Marinčić, N. Materials balance in primary batteries. II. Lithium inorganic batteries at high discharge rates. Journal of Applied Electrochemistry 6, 51-58, doi:10.1007/BF01058870 (1976).
21 Spotnitz, R. M., Yeduvaka, G. S., Nagasubramanian, G. & Jungst, R. Modeling self-discharge of Li/SOCl2 cells. Journal of Power Sources 163, 578-583, doi:https://doi.org/10.1016/j.jpowsour.2006.09.025 (2006).
22 Morrison, M. M. & Marincic, N. Studies in lithium oxyhalide cells for downhole instrumentation Use of lithium tetrachlorogallate electrolyte in Li/SOCl2 cells. Journal of Power Sources 45, 343-352, doi:https://doi.org/10.1016/0378-7753(93)80023-I (1993).
23 Barpanda, P., Oyama, G., Nishimura, S.-i., Chung, S.-C. & Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nature Communications 5, 4358, doi:10.1038/ncomms5358 (2014).
24 Zhu, C., Kopold, P., van Aken, P. A., Maier, J. & Yu, Y. High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network. Advanced Materials 28, 2409-2416, doi:10.1002/adma.201505943 (2016).
25 Liu, J. et al. Extension of The Stöber Method to the Preparation of Monodisperse Resorcinol–Formaldehyde Resin Polymer and Carbon Spheres. Angewandte Chemie International Edition 50, 5947-5951, doi:10.1002/anie.201102011 (2011).
26 Klinedinst, K. A. & McLaughlin, M. L. Solubilities of sulfur and sulfur dioxide in thionyl chloride with and without 1.8 M lithium tetrachloroaluminate. Journal of Chemical & Engineering Data 24, 203-206, doi:10.1021/je60082a017 (1979).
27 Gross, S. & Society, E. Proceedings of the Symposium on Battery Design and Optimization. (Battery Division, Electrochemical Society, 1979).
28 Abraham, K. M., Mank, R. M. & Holleck, G. L. Investigations of the safety of Li/SOCl2 batteries. (1979).
29 Fujii, K. et al. Unusual Li+ Ion Solvation Structure in Bis(fluorosulfonyl)amide Based Ionic Liquid. The Journal of Physical Chemistry C 117, 19314-19324, doi:10.1021/jp4053264 (2013).
30 Takada, K. et al. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries. ACS Applied Materials & Interfaces 9, 33802-33809, doi:10.1021/acsami.7b08414 (2017).
31 Matsumoto, K. et al. Thermal, Physical, and Electrochemical Properties of Li[N(SO2F)2]-[1-Ethyl-3-methylimidazolium][N(SO2F)2] Ionic Liquid Electrolytes for Li Secondary Batteries Operated at Room and Intermediate Temperatures. The Journal of Physical Chemistry C 121, 9209-9219, doi:10.1021/acs.jpcc.7b02296 (2017).
32 Lee, J. et al. Ultraconcentrated Sodium Bis(fluorosulfonyl)imide-Based Electrolytes for High-Performance Sodium Metal Batteries. ACS Applied Materials & Interfaces 9, 3723-3732, doi:10.1021/acsami.6b14878 (2017).
33 Sakaebe, H. & Matsumoto, H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery. Electrochemistry Communications 5, 594-598, doi:https://doi.org/10.1016/S1388-2481(03)00137-1 (2003).
34 Dey, A. N. Lithium anode film and organic and inorganic electrolyte batteries. Thin Solid Films 43, 131-171, doi:https://doi.org/10.1016/0040-6090(77)90383-2 (1977).
35 Moshtev, R. V. The Primary Passive Film on Li in SOCl[sub 2] Electrolyte Solutions. Journal of The Electrochemical Society 128, 1851, doi:10.1149/1.2127750 (1981).
36 Fleischer, N. A., Manske, S. M. & Ekern, R. J. Reduction of Voltage Delay in the Li / SOCl2 System via Suitable Choice of Electrolyte Salts. Journal of The Electrochemical Society 131, 1733-1738, doi:10.1149/1.2115951 (1984).
37 Terlingen, J. G. A., Jan, F. & Hoffman, A. S. Immobilization of surface active compounds on polymer supports using a gas discharge process. Journal of Biomaterials Science, Polymer Edition 4, 31-33, doi:10.1163/156856292X00277 (1993).
38 Abraham, K. M. The Lithium Surface Film in the Li∕SO[sub 2] Cell. Journal of The Electrochemical Society 133, 1307, doi:10.1149/1.2108858 (1986).
39 Siriwardane, R. V. & Cook, J. M. Interactions of SO2 with sodium deposited on CaO. Journal of Colloid and Interface Science 114, 525-535, doi:https://doi.org/10.1016/0021-9797(86)90438-8 (1986).
40 Peisert, H., Chassé, T., Streubel, P., Meisel, A. & Szargan, R. Relaxation energies in XPS and XAES of solid sulfur compounds. Journal of Electron Spectroscopy and Related Phenomena 68, 321-328, doi:https://doi.org/10.1016/0368-2048(94)02129-5 (1994).
41 Hosokawa, T. et al. Stability of Ionic Liquids against Sodium Metal: A Comparative Study of 1-Ethyl-3-methylimidazolium Ionic Liquids with Bis(fluorosulfonyl)amide and Bis(trifluoromethylsulfonyl)amide. The Journal of Physical Chemistry C 120, 9628-9636, doi:10.1021/acs.jpcc.6b02061 (2016).
42 Gilman, S. The Reduction of Sulfuryl Chloride at Teflon-Bonded Carbon Cathodes. Journal of The Electrochemical Society 127, 1427, doi:10.1149/1.2129924 (1980).
43 1998 - 2020 PerkinElmer Inc. Cassel, W. J. S. a. R. B. High Sensitivity Volatiles Analysis by TGA, http://www.perkinelmer.com/