To improve the wind turbine shutdown early warning ability, we present a generalized model for wind turbine (WT) prognosis and health management (PHM) based on the data collected from the SCADA system. First, a new condition monitoring method based on kernel entropy component analysis (KECA) was developed for nonlinear data. Then, an aggregate statistic T was designed to express the state change of the monitoring parameters. As the features were submerged because of the diversity and nonlinearity of SCADA data, an enhanced generalized regression neural network (GRNN) method—KECA-GRNN—for failure prediction was developed by adding KECA for feature extraction to improve the predictive performance. Finally, the results of the KECA-GRNN model were visualized by a bubble chart, which made the health assessment results of the WT more intuitive. Similarly, the fusion residual was defined to analyze the health trend of the WT, and the health status of the WT was represented by two visualization methods—bubble chart and fuzzy comprehensive evaluation. Furthermore, they were evaluated using SCADA data that were collected from a wind farm. Observations from the results of the model indicated the ability of the approach to trend and assess turbine degradation before known downtime occurrences.